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(h the T’EnO Modes of a Ferrite Slab Loaded

Rectangular Waveguide and the Associated

Thermodynamic Paradox*

A. D. BRESLERt

Summary—It has been known for some time that the secular
equation for the TE.O modes of a perfectly conducting rectangular
waveguide loaded with a transversely magnetized dissipationless

full height ferrite slab located against one of the narrow walls of the

waveguide admits the possibility of the existence of only a single

propagating mode (transporting energy in one direction only). In this

paper, it is established that if we admit the existence of a passive

dissipationless uniform waveguide supporting only a single propagat-

ing mode we are led inescapably to a thermodynamic paradox. A

uniqueness theorem is cited to establish that, for the waveguide
described above, the paradox is associated with the TE.o mode set

alone. Thk conclusion motivates a thorough study of the secular
equation for the TE.o modes of this waveguide. Thk study is initiated
by an investigation into the properties of the TE.o surface waves
guided along a plane interface separating a transversely magnetized

dissipationless ferrite from free space. It is shown that two oppositely
directed surface waves are guided along thk interface. These two

surface waves are admitted in different Wlte ranges of the parameter

values which never coincide and which may or may not overlap. Each

of the two surface waves has both a high-and a low-frequency cutoff

and, in general, both a high and a low dc magnetic field cutoff. The

propagation constant of one of the surface waves becomes infirdte at

the low :field (high-frequency) cutoff. The next step in the analysis

consists of an examination of the behavior of these surface waves on
tiite thickness ferrite slabs located in different environments. It is
shown that when one of the two interfaces bounding the slab ap-
proaches a short circuit the inllrdte propagation constant noted above
behaves in a peculiar discontinuous fashion. Next, the TEno mode
secular equation of the slab loaded rectangular waveguide is analyzed

and information is developed leading to a description of the behavior
of the propagation constants of all the propagating TE.o modes. Thbi

analysis reveals that the possibility of the existence of only a single

propagating mode is associated only with the eurface wave mode of

this waveguide. A resolution for the thermodynamic paradox is pro-

posed based on the discontinuous behavior of one of the intinite

propagation constants associated with thk surface wave mode. It is

shown that with a properly chosen secular equation f or the waveguide

under consideration there are always an even number of TEWOprop-
agating modes, half of which transport energy in one direction, half
in the other. Thk demonstration is based, in part, on an analysis lead-

ing to relations between the direction of the power flow associated
with a propagating mode and the derivative of its propagation con-

stant with respect to the dc magnetic field.
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INTRODUCTION—THE THERMODYNAMIC PAR.ADOX

HIS PAPER is concerned with a study of the TE~o

T
modesl of a perfectly ‘conducting rectangular

waveguide loaded with a full heigh~t ferrite slab

located against one of the narrow walls of the wave-

guide. The ferrite slab is uniformly magnetized in the

transverse direction indicated in Fig. 1. As part of this

study, we will examine the properties of the TE.o sur-

face wave modes guided along the plane interfaces

separating transversely magnetized ferrite slabs from

free space. While these studies are of interest in their

own right, they also have a further significance which

will now be made evident by a statement of their moti-

vation.

/
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Fig. l—Ferrite slab loaded rectangular waveguide
(slab against waveguide wall).

Some time ago, Lax and Buttonz pointed out a curi-

ous phenomenon associated with the spectrum of the

waveguide whose cross section is shown in Fig. 1. They

found that the secular equation determining the propa-

gation constants of the TE~o modes of this waveguide

admitted the possibility of the existence (of only a single

propagating mode (transporting energy in one direction

only). The obvious implication is that this waveguide

can be used to construct an ideal one Waly transmission

system. If this were really possible, it would constitute a

clear violation of the basic laws of thermodynamics. In

1 These modes are characterized by the absenee of any variation
along the direction of the dc magnetic field, L?o, and by the fact that
the electric field is parallel to Ho. The locations of the conducting
planes normal to the y direction are therefore of no significance. For
a description of the field components see, e.g., H. Seidel, ‘{iFerrite
slabs in transverse electric mode waveguide, ” Y. A @@t.~hys., 1701.28,
PP. 2 18–226; February, 1957.

Z B. Lax and K. J. Button, “Theory of new ferrite modes in rec-
tangular waveguide, ” J. Appl. Phy~, vol. 26, pp.1184–1185; Sep-
tember, 1955. Also, “Theory of ferntes in rectangular waveguide, ”
IRE TRANS. ON AN’rmMs AND PROPAGATION, vol. AP-4, pp. 531–
537; July, 1956.



82 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES January

an attempt to resolve this difficulty, it has been argued3,4

that the power flow in the reverse direction takes place

via the cutoff (nonpropagating) modes and that there-

fore no thermodynamic difficulty actually exists. We

will now show that the cutoff modes do not provide a

satisfactory mechanism for the resolution of the para-

dox. This demonstration will not be restricted to the

special case of the waveguide described previously.

To establish that the existence of a passive dissipa-

tionless uniform waveguide supporting only a single

propagating mode does indeed constitute a violation of

the basic thermodynamic laws, we note the following.

First, we recall that in a dissipationless waveguide only

the propagating modes (considered individually) carry

power.6 The cutoff modes take part in the mechanism

of energy transport only through the coupling between

two modes associated with complex conjugate propaga-

tion constants.5 Now, consider the junction of the two

dissimilar uniform waveguides illustrated in Fig. 2. In

an earlier paper, c the author has shown that when this

structure is excited from the empty waveguide side the

fields to the right of the junction plane will consist of a

superposition of only those modes which, if propagating,

transport energy to the right (i.e., along +z) or, if cut

off, decay exponentially with increasing z. Thus, only

one of the two modes associated with a pair of complex

conjugate propagation constants is excited at the j unc-

tion plane and therefore the cutoff modes play no role

in the transport of energy away from the junction.

Finally, suppose that the waveguide to the right of the

junction plane supports only a single propagating mode

which (without loss of generality) is assumed to trans-

port energy to the right. The incident wave shown in

Fig. 2 would then excite this single propagating mode

along with an infinity of cutoff modes which all decay

with increasing z. Therefore, for z>>z’ and increasing,

the fields in the waveguide approach ever more closely

to the propagating mode fields.

Now let a short circuit termination be introduced into

the waveguide at some z>>z’. Since there are no prop-

,
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Fig. 2—Junction of two dissimilar uniform waveguides.

3 B. Lax, Chairman, ‘(Combined panel session on propagation in
doubly-refracting media and future directions for research in electro-
magnetic wave theory in modern physics, ” IRE TRANS. ON Aii-
TE~6~ASAND PROPAGATION, vol. 4, pp. 567–577 (esp. 573–576); July,

A M. L. Kales, “Topics in guided wave propagation in magnetized
ferritesj” PROC. IRE, vol. 44, pp. 1403–1409; October, 1956. The
discussion referred to appears on p. 1408.

5 A. D. Bresler, G. H. Joshi, and N. Ms,rcuvitz, ‘{Orthogonality
properties for modes in passive and active uniform waveguides, ” Y.
A@L Pkys., vol. 29, pp. 794-799; May, 1958.

s A, D. Bresler, “The far fields excited by a point source in a pas-
sive dissipation less an isotropic waveguide, ” I RE TRANS. ON MICRO-
WAVE THEORY AND TECHNIQUES, vol. 7, pp. 282–287; April, 1959.

agating modes which carry power to the left, only cutoff

modes will be excited at the short circuit. The ampli-

tude coefficients of these cutoff modes will be deter-

mined from the requirement that the net tangential

electric field at the short circuit must equal zero. Ad-

mittedly, some power transfer now takes place via the

coupling between pairs of cutoff modes which decay

with equal attenuations in opposite directions along

z.5 To demonstrate that this power transfer mecha-

nism cannot provide a proper power balance, we first

assume the converse; i.e., we assume that the net power

flow through the transverse plane just to the left of the

short circuit is equal to zero. This net power flow may be

written as PO +ZP, where PO is the power flow associ-

ated with the single propagating mode and ZPi is the

net power flow resulting from cutoff mode coupling.

Each term in ZP~ is proportional to the product of the

amplitude coefficients of a pair of cutoff modes char-

acterized by complex conjugate propagation constants

one of which is excited at the junction plane, the other

at the short circuit.5’d Now suppose that the short cir-

cuit is moved a distance n&O (n is an integer, Ago is the

guide wavelength associated with the propagating

mode) further away from z’. The fields incident on the

short circuit in the two locations are almost identical.

Thus, for either location, the set of modes excited at the

short circuit constitutes a modal representation (in

terms of a complete eigenfunction set) of a transverse

electromagnetic field whose electric field component

must be almost exactly the negative of the propagating

mode transverse electric field incident on the short cir-

cuit. Since the two short circuit positions are separated

by nl,o, this latter field has equal amplitudes at the two

short circuit positions. Therefore, the amplitude coef-

ficients of the cutoff modes excited at the short circuit

are practically identical for the two locations. In travers-

ing the distance between the two short-circuit positions,

the cutoff modes excited at z’ are attenuated by the fac-

tor exp ( —awz&o) where at> O is the attenuation con-

stant of the ith mode. Thus, if we now compute the net

power flow through the transverse plane just to the left

of the new short-circuit position, we find that P. is un-

changed while each term in ZP~ is reduced by the factor

exp ( —ai&o). Therefore PO +2Pi is now unequal to

zero, We must therefore conclude that power transfer
via cutoff mode coupling cannot provide the proper

power balance. Thus, when we introduce the short cir-

cuit termination we are faced with a situation wherein
we are continuously pumping energy into a reactive

termination and no means exists for returning all of this

energy to the source. This clearly constitutes a violation

of the basic laws of thermodynamics. We are therefore

led to assert that a passive dissipationless uniform wave-

guide cannot support but a single propagating mode.

We are now faced with the problem of reconciling this

assertion with the known results cited earlier for the

waveguide in Fig. 1. In this connection, it is important

to recognize that when the discontinuity problem posed
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in Fig. 2 is that for an infinite rectangular wavegttide

which is empty for z <z’ and which, for z > Z1, is loaded

with a ferrite slab as in Fig. 1, then the paradox arises

even though it is the TEnO mode set of the slab loaded

waveguide which has only a single propagating mode.

This conclusion is based on a uniqueness theorem es-

tablished by the author’ which states that if the fields

which excite the two waveguides are independent of y

(see Fig. 1) and are completely characterized by a single

non-zero component of electric field directed along y,

then the boundary value problem which has been posed

is actually a two dimensional problem and the total

field in the structure can be completely described in

terms of this single component of electric field. Thus,

when the incident mode indicated in Fig. 2 is, e.g., the

TEIO mode of the empty rectangular waveguide, only

TEnO modes will be excited at the junction plane and

we therefore may not look outside the TE. o mode set

to resolve our difficulty.

In casting about for a basis for resolving this paradox,

we reject the approach advanced by Seide18,9 which in-

volves the assumption of an ‘(intrinsic 10SS” for a 10SS-

Iess ferrite medium and into which he introduces argu-

ments based on a consideration of the atomic model

from which the ferrite properties are deduced. our atti-

tude is that such arguments seek to answer an electro-

magnetic question by considerations outside the frame-

work in which the problem is posed. To be more specific,

our attitude is that we are concerned solely with the

solutions to the Maxwell equations in a region contain-

ing an anisotropic medium for which we are given the

permeability dyadic. We do not need to know the atomic

model from which this dyadic has been deduced. We do

know that this dyadic satisfies the restrictions imposed

by the linearity, passivity, Iosslessness and time reversi-

bility requirements.~,lo Under these circumstances, if

the solutions to the Maxwell equations give rise to

thermodynamic difficulties, the source of the difficulties

must be sought in the electromagnetic problem, not in

the atomic model.

As a consequence of the considerations outlined above

a thorough analysis of the TEf10 modes of the waveguide

illustrated in Fig. 1 was undertaken. As a result of this

analysis, we will establish that with a properly chosen

secular equation for the waveguide in Fig. 1 there are

always an even number of TE.O propagating modes, half

of which transport energy in one direction, half in the

other. This will dispose of the thermodynamic paradox

associated with this structure. To accomplish this task,

7 A f). BreSler ‘(on the Discontinuity Problem at the lnPut to

an An&otropic W&veguicfe, ” D.E.E. dissertation, Polytechnic In-
stitute of Brooklyn, Brooklyn, N. Y.; June, 1959. The dissertation
has also appeared as Res. Rept. No. R-716-59 of the Microwave
Res. Inst. of the Polytechnic Inst. of Brooklyn.

e Seidel, op. cit.
9 aRound-table di~~us~io~ on design limitations of microwave

ferrite devices,” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQUES, vol. 6: pp. 104-111; January, 1958.

10B. S. Gourary, “Dispersion relations for tensor media and their
:$@eation to ferrites, ” J. A#. Plzys., vol. 28, pp. 283-288: March.

we will first show that the possibility of the existence of

only a single propagating mode is associated only with

the surface wave mode, i.e., the ‘(ferrite-dielectric” mode

identified by Lax and Button.2 In the discussion which

follows, we will first examine the properties of this sur-

face-wave mode. This mode represents a true surface

phenomenon in that the amplitudes of its fields decay

exponentially away from the ferrite-empty space inter-

face on both sides of the interface. Therefore, the essen-

tial properties of this surface wave mode will be deter-

mined from a study of its behavior in the ferrite loaded

parallel plate waveguide, whose cross section is shown in

Fig, 3.

UNIFORMLY MAGNEJ!ZEO

DISS!PATIONLESS FERRITE

___
7/

\ ---

fl~)’”~, “~”’“mro+-

--- ---
Tm ;7—S-L

Fig. 3—Ferrite loaded parallel plate waveguicfe.

DEFINITIONS AND PRELIMINARY COnSideratiOnS

All field components are assumed to have the (sup-

pressed) time dependence exp ( – L-et) where w is the

radian frequency. Since we will be concerned exclusively

with TE.O modes, all field components are independent

of y. Since these modes propagate along z, the z depend-

ence for all field components in either the empty or fer-

rite loaded regions is taken as exp (iKz). The dependence

on x differs in the two regions, This dependence is taken

as exp ( + ik.ax) in the empty regions and exp ( f ik.~x)

in the ferrite loaded regions. We adopt tlhe Convention

that both k.a and ka~ satisf y the restrictions k. >0 if real

and Im kc> O if imaginary. The wave numbers K and kc

are related vial

~2 = k2 – km2 = kzwl – kzmzi (1)

where k2 = m2pOE0, po and eO are, respectively, the perme-

ability and permittivity of free space, e is the (relative)

scalar dielectric constant of the ferrite and vI, the (rela-

tive) effective permeability parameter for transverse

magnetization, will be defined more precisely below.

For the time dependence indicated above, the (rela-

tive) permeability tensor for a gyromagnetic ferrite sub-

jected to a uniform internal magnetic field applied

along y takes the forml~

II

/4 452 0

pzl%l = – 4J2 m o (2)

001

where the subscripts on v indicate the qyclic order em-
ployed in the tensor representation. For a rlissipation-

Iess ferrite, the dependence of 1.L1,2on frequency, dc mag-

netic field (Ho), and saturation magnetization of the

ferrite (47rM.) is given byll

11H. Suhl and L,. R. Walker, “Topics in guided wave propagation
through gyromagnetic media,” Bell Sys. Tech. J., vol. 33, pp. 579-
660; May, 1954.
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I–a(p +(r) P
fll. —

l–a2— ‘Z=l–d
(3)

where

7(47rMJ 7H0
p=— — q.— (4)

@ u

and y is the magnitude of the gyromagnetic ratio. 12

Note that p and u are defined so that at a fixed fre-

quency p is a constant of the material while u is propor-

tional to the dc magnetic field. Eqs. (3) are valid only for

saturated ferrites, Le., ord y when HO exceeds that value

required to produce saturation. Since the dc permeabil-

ity of most ferrites is very large, the value of u required

for saturation is very small. 11 Thus, whenever results

are stated for u = O these are understood to be valid

when u approaches zero but remains larger than the

value required for saturation. Since iYo and 4TM, must

have the same algebraic sign, it follows that the product

pu is always positive. Therefore, a reversal of the dc mag-

netic field changes the sign of pa but does not affect pl.

For modes which propagate in a direction perpendicu-

lar to the dc magnetic field, it is convenient to express

all results in terms of the elements of the inverse ~

tensor
( 1 1 \

— —’i— o
n V2

1
–1 = i—!3 Lo (5)

V2 VI

\ 0 0 1,

where

P12 — /.422 I–(p+ a)’
VI =

/-fl ‘l–u(p +.)

~12 _ ~22 I–(p+u)z
V2 =

— (6)
lJ2 – P

It is evident that a reversal of the dc magnetic field

changes the sign of vz but does not affect vI. The param-

eters P1,2 and VI,.2are sketched in Fig. 4 as functions of

a for fixed p. These sketches therefore illustrate the be-

havior of the permeability as a function of the dc mag-

netic field for a fixed ferrite at a fixed frequency.
Certain features of the curves in Fig. 4 deserve com-

ment. First, since (3) and (6) are valid only for saturated

ferrites, we should not be disturbed by the fact that the

curves based on these equations do not indicate an iso-

tropic medium at u = O. On the other hand, Fig. 4 makes

evident that the ferrite becomes an isotropic dielectric

as c approaches infinity. Next, we remark that at ~ =1,

Le., at the ordinary “gyromagnetic resonance, ” the

parameters VI,Z do not display any resonance or, indeed,

any sort of unusual behavior. We will find that the point
c = 1 has no significance for the surface wave phenom-

ena. Finally, two special values of u, UZ,and U5are indi-

lZ~ = 5.6r for HOexpressedin kilo-oersted, 47rM, in kilogauss and
frequency in kmc.
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Fig. 4—Ferrite permeability parameters.

cated in Fig. 4. At the latter, VI becomes infinite. At the
former, VI and V.Zboth become zero, their ratio remaining

finite.

SURFACE WAVES AT A SINGLE lNTERFACE

To obtain the secular equation determining the sur-

face-wave propagation constants, we employ a trans-

verse resonance procedure. For the structure in Fig. 3,

this requires a knowledge of the admittances Y. and

Y~. The former is simply the input admittance of an

infinite transmission line for a TEnO mode of an empty

parallel plate waveguide. If we choose to normalize the

fields so that the admittance for the TEM mode of this

waveguide is unity, then Y. becomes

%=+’. (7)

We recall that the input admittance to an infinite modal

transmission line corresponds to the ratio of the ampli-

tudes of the transverse (to x) magnetic and electric

fields of that mode which propagates outward to infinity,
i.e., in this case, of the mode whose dependence on x is

given by exp (L%zax). We obtain the admittance Y~ via

a similar requirement for the ferrite loaded waveguide.

Thus, we define Y~ as the ratio of the amplitudes of the

transverse (to x) magnetic and electric fields for a mode

whose x dependence is exp ( — ikzmx). The admittance

Y~ is then obtained asl

(8)

The secular equation is now ~btained from the trans-

verse rewg~~ce ~equiremgmt
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4 + e
Ya+Ym=o=q. +~ —i— (9)

VI V2

where we have introduced the normalized wave num-

bers

k k
~a=~ qm=~ O=+. (10)

As it stands, the secular equation (9) is ambiguous be-

cause of the quadratic nature of the relationships in (1).

This ambiguity is resolved by recognizing that the fields

of a surface-wave mode must decay exponentially away

from the interface on both sides of the interface. There-

fore, we require that Im qa> O and Im qn> O. Substitu-

tion from (1) into (9) now yields the following as the

secular equation in terms of 6 only:

dl–o’+&w, -@–i~=o
VI V2

subject to

{

02>1 Im~l–62>0
(11)

$2> wl Im ~wl – 02>0.

Since this is an algebraic equation, its solutions are

readily obtained in closed form and are subject to ex-

haustive analysis. In the following, we give the results

of such an analysis omitting most of the details of the

required algebraic manipulations which, while compli-

cated in detail, are quite straightforward .7J3
Solutions to (11) are obtained by squaring twice to

obtain a quadratic equation in Oz. When V1 and vz are

eliminated via (6) the solution to this quadratic is ob-

tained as

curves in Fig. 5 represent surface-wave solutions. In this

discussion, we will make use of the information con-

tained in the equations in Table 1, where certain values

of cr are distinguished and defined in terms of the fixed

parameters p and e. It is readily verified that, for p >0

and e> 1, a> ~ implies aa > ab except that at may be

~ v4. Since the product of p and ~ is always positive, it is

sufficient to consider only p >0 and u >0. Note thai- if p

and CTare both replaced by their negatives, i.e., if the

dc magnetic field is reversed, the only effect on the

solutions indicated in (12) is to interchange 0+2 and 0-2.

The restriction to p >0, a >0 means that if any U. in

Table I is found to be negative for p >0, tlhen that value

of a is no longer significant, i.e., can no longer be ob-

tained with the given ferrite at the given frequency.

From the information given in (12), Table I, and Fig.

5, it follows that surface-wave mode solutions may occur

only in the interval O<u < u5. To justify this statement,

we note that 0*2 are both equal to or less than zero for

all a > at so that the restriction in (11) is not satisfied. In

the interval as< u < U6, 6+2 are both complex. Surface-

wave modes with complex propagation constants are

not admissible. This is evident from the following con-

siderations. If a complex O is a solution c)f (1 1) then its

complex conjugate, O*, must also be a solution. Suppose

that the qa and q~ associated with O are such that Im

g.> O and Im g~> O so that 0 represents, an admissible
surface wave-mode. It follows that q~* and g~*, asso-

ciated with O*, are characterized by lm qa* <0 and Im

q,,,* <O. Therefore, O* cannot be the propagation con-

stant of an admissible surface-wave mode. It can be

shown5 that, in a dissipationless waveguide, complex

modal propagation constants must occur in complex

where u = 4P +LT. The plL~s or minus subscript associated

with 02 distinguishes the solution with the corresponding

algebraic sign preceding the radical (understood to be

positive). Note that the solutions to the biquadratic

given here do not necessarily provide solutions to (11).

Such solutions result only when the restrictions indi-

cated in (11) are satisfied. IJ!oreover, when a particular

02 given by (12) does provide a solution to (11), it will

satisfy the latter equation with only one or the other of
o = f w~. Thus, the restrictions on the sign of the
imaginary part of g. and q~ serve to determine the alge-

braic sign of Oappropriate to the particular solution.

A sketch of oiz as a function of u with p held fixed is

given in Fig. 5. We will now establish that only those

values of f3*2 lying on the solid line segments of the

13 A, D. Br~,ler ~(TEno surface w~ve~ at Ferrite-Air Interfaces, ”

Polytechnic Instit;te of Brooklyn, Brooklyu, N. Y., Microwave Re-
search Institute, Memorandum R-723 -!59; February 28, 1959.

conjugate pairs. Therefore, since we cannot admit 6 as

a proper surface-wave solution and exclude O*, we ex-

clude all complex O from further consideration.

The outstanding feature to be observed in the range

a < a6 is the infinite 6+Z solution which obtains for a-ws.

This infinity is not associated with any peculiarity in

the ferrite parameters since both vl,.z(uJ are finite and

non-zero. Thus, this infinity might be described as a

“waveguide resonance” as opposed to a “medium reso-
nance. y~M Since a surface-wave solution must satisfy the

restriction 02>1, it follows that the infinite propagation

M The existence of this infinite solution in a ferrite slab loaded

rectangular waveguide and its characterization as a “waveguide
resonance” is noted by H. Seidel in ref, 1. Seidel gix,es the condition
for the ezistence of this resonance as w= b (~o+ Ho) where Bo = Ho
+4~M.. This is exactly equivalent to u,= 1 – ~P. For the benefit of
readers more familiar with descriptions of critical points in terms of
BO and HO we take this opportunity to point out that a~ and U5 are

exactly equivalent to cOZ= -YBO and QS= y @?oHo, respectively.
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5 at UT and that 9–2 has no zeros. In Table I it is indi-

constant at rs may be associated with a surface-wave

solution only for a-ws from above. It is readily demon-

strated that 0+2 has only the single zero shown in Fig.

0’

———...——.——————

.,=.p+~,.p~~ (+<-+<1)
——
Vz=l —p

.s=1–$

.,=.; +/l+;

; +/’’+(s+9’~6=— _

‘q=- E+”:+A++($)’

cated that 0-.2 passes through a minimum at U4 and that

its value there is always one. With this information, we

conclude that surface-wave solutions may occur only on

the curve passing through the points labeled A through

E in Fig. 5.

We now assert that surface-wave mode solutions are

obtained only on the segments B C and DE (the solid

line segments) of the curve in Fig. 5. Moreover, we as-

sert that d–z on B C represents a solution such that

f?- >1 whereas 0+2 on DE represents a solution such that

19+< – 1. In the following, we will give only a brief out-

line of the analysis required to justify these assertions. 13

To facilitate the discussion which follows we rewrite (11)

as

The “admissible” solutions of this equation must, of

course, still satisfy the restrictions 62>1 and 62> WI.

This version of the secular equation makes evident th~t

only one of the two square roots of either 0+2 or 0–2 may

be an admissible surface-wave solution. Now, in the

interval O< u < u6, fl._2is a single valued continuous func-

TABLE I

(, – 3)p +p’ z! 2U(6 – 1)’ + 6P’
4’ =

P (d – 4)

2(. – 1) – ,p * 2<(C – 1)’ + 6P
Q*2 =

p(p - 4)

~_2_ 4+(, +1)P ‘>1

-[ 12<4(, + 1)/3 –

0+2 = o (:0+2=0)

, .—

I–pz
1

—— P
P

————

1 1
vl>— v2>—

e e

––—-–l–—––—————

0 I 0

——c —— ———

4+P 4+p——
P 4

— ——

—

I
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tion of a. Therefore, if O_, one of the square roots of fl_z, ~I e

is a proper solution of (13) in one part of this interval

but not in another part, the change must occur either . \:G –-–––––-–-––––-–-.––– m

C.J

where 9_2 = 1 (at point C) or where. 0-2= WI (at point @F---:\ I /!

B). In the interval aa < a < us, O+z is also a single-valued

continuous function of IS and, moreover, is aIways o ;,

P’;m ‘

0 _* O11~r14 n
greater than both 1 and w in this interval. Therefore, -t ------------”~--~-~, -1 , ~’——--— 4____ J

if one of the square roots of 6+2 provides a proper sur- $13=y
face-wave solution at any point of the segment DE, it 3+
must provide a proper solution at all points of this seg-

Qe,-

ment. Finally, we observe that if O(a) represents a
Q5=G

proper surface-wave solution in some continuous in-

terval in u then either 0>1 or 6< – 1 throughout this

interval, With these observations, the significance of the
(a) (b)

successive steps in the analysis outlined in the next Fig. 6—Surface wave propagation constants. (a) p= constant,
=comtant, uNHO. (b) HO=constant, rn = 1 +p/u =constmt,

paragraph should be evident. c1= l/ffNm.

The first step in the analysis is to consider the be-

havior of (13) in the limit as 6+24 OJ. If VI and V2 are where m is independent of frequency and, for fixed .~o,

eliminated from (13) by substituting their known Q is directly proportional to the frequency, Expressions

values at 0-?, given in Table 1, it becomes evident that, for VI,2 as functions of Q and m instead of p and u are

for O+2h m, t9+~ – ~ is a proper surface-wave solution readily obtained and the entire analysis may be re-

near point E (i. e., as C-W3 from above). It then follows peated. Most of the required information cam be ob-

that 6+< – 1 must be a proper surface-wave solution tained by direct substitution into the result of the ear-

throughout the segment DE. An independent verifica- lier analysis and a reinterpretation of these results form

tion of this conclusion may he obtained by demonstrat- fixed and Q as the variable. The results of this new

ing that, in the neighborhood of point D, points on DE analysis are shown in Fig. 6(b). The surface-wave cutoff

are proper solutions with 0+< — 1, whereas points on points %,4,5 are defined there in terms of m and c. For

CD are not proper solutions. This implies that surface- e>1 and m >1, all these cutoff points are finite and

wave solutions do not exist on the segment CD. The non-zero. The two frequency ranges in which surface

next step in the analysis is to show that f3_(a3) >1 is a waves are permitted will overlap, i.e., :Qs> W, when

proper surface-wave solution if and only if (e+ l)p >4. (~ – l)nz> (c+3). In the earlier analysis, the low-field

Since cr4~ VS according as (e+ l)P ~ 4, this verifies the cutoff point al was obtained from the solution of a

conclusion that points on CD do not represent proper quartic equation. The expression for al given in Table I

solutions. In addition, it shows that points on B C, with is an approximate solution of this quartic valid subject

6->1, do represent admissible surface-wave mode solu- to the assumptions indicated in Table I in connection

tions. Point B is defined by the requirement that with the expression for al. In the present analysis, it is

O-2(UJ = CV,(uJ. This requirement is satisfied with al> O possible to obtain an exact expression for Q1 since the

for all p less than some upper bound. For sufficiently quartic equation for o-l transforms to a quadratic eclua-

Iarge q in particular, for the range of c values character- tion in Q12. The solution of this biquadratic which cor-

istic of most ferrites, the upper bound is given by responds to the requirement 0_2 = w is

pu = 0.6. Thus, the final step in the analysis is to show

that O_Z(0) does not provide a proper surface-wave solu-

tion when p is sufficiently small. From this we conclude

that, when IJI >0, points on AB do not represent proper

surface-wave mode solutions.

The conclusions we have drawn from the analysis

described above are summarized in Fig. 6(a) where we

indicate the behavior of the surface-wave mode propa-

gation constants as a function of a, i.e., as a function of

the dc magnetic field at a fixed frequency. To obtain

analogous results applicable when the dc magnetic field
is fixed and the frequency is varied, we introduce the

variables

filz =
a + V’CZ2— 4(C — 1)(67?3— :[)m~

—.
2(C – 1)

where

a = (36 — 1)??32— (2C + 1)7?3+ c. (15)

For all c> 1, QIZ is finite so that this high-frequency cut-

off point always occurs. This is consistent with the re-

sults of our earlier analysis since, for an~7 ferrite, p ap-

proaches zero as u goes to infinity.

Fig. 7 shows computed curves of f3 as a function of a
for values of p and e chosen to cover the range of values

characteristic of most ferrites at X band.’5 Note that an

47rM*
fl=~=~, ~= 1+1=1+ — >1 (14) MS. SenSiPer, ‘fResonance 10SSproperties of ferrites in the !J-kmc

u THO a Ho region,” PROC. IRE, vol. 44, pp. 1323-1342; Octolber, 1956.
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Fig. 7—Propagation constants for surface waves at a ferrite-air
interface (for fixed frequency).

expanded scale has been employed for 8>1. The curves

in Fig. 7 make it evident that, for fixed p and u, 10 I in-

creases with increasing E and that, for e and u fixed, 10 I

decreases with increasing p. The only positive directed

(0> 1) surface wave which exhibits a low-field cutoff

point is that for p =0.4. This is consistent with the re-

quirement indicated earlier that p be less than approxi-

mately 0.6 for this cutoff point to make its appearance.

To conclude this section, we note that we have shown

that two oppositely directed TEno surface-wave modes

are guided along a plane interface separating a dissipa-

tionless anisotropic (transversely magnetized) ferrite

from free space. The two surface waves exist in different

finite ranges of the parameter values. These two ranges

never coincide and may or may not overlap. In contrast

to the behavior of more familiar surface-wave phenom-

ena, the surface waves here under consideration always

exhibit both high- and low-frequency cutoff points (for
fixed dc magnetic field). In addition, at a fixed fre-

quency, each of the two surface waves cuts off for suf-

ficiently high dc magnetic field and may or may not

(depending on the parameter values) also cut off for

sufficiently low dc magnetic field. The propagation con-
stant of one of the two surface waves becomes infinite

at the low-field (high-frequency) cutoff point. The be-
havior of this infinite propagation constant, when the

guiding surface is located in different environments,

will be the major subject of discussion in the next section.

SURFACE WAVES ON FERRITE SLABS

In this section we will be concerned with the TE.O

surface waves guided along finite thickness ferrite slabs

located as indicated in Fig. 8. The secular equations de-

termining the surface-wave propagation constants are

again obtained via the transverse resonance procedure

described above. For this purpose we employ, in addi-

(a) (b)

E m%”
+s;

(c) (d)

Fig. 8—Ferrite loaded parallel plate waveguides. (a) Ferrite slab in
free space. (b) Ferrite slab near a short circuit. (c) Ferrite slab
at a short circuit. (d) Ferrite filled semi-infinite waveguide.

tion to the admittances defined in (7) and (8), the im-

pedance transfer formulas given by Morgenthaler18 for

TE.O modes in ferrite media. We will be interested pri-

marily in the surface-wave solutions with large 0. With

this in mind we let

From (1) and (10) it follows that the wave numbers 0,

Qa, and Q~ are related through

f32 = 1 + Qa2 = WI + Q~2. (17)

Thus, for finite Vl, 02-~ implies Q.z- co and Q~2a ~.

For each of the structures in Fig. 8(a), (b), (c) the

empty region extends to infinity. We must therefore

require that Q.> O.

Before writing down the secular equation for the fer-

rite slab in free space [see Fig. 8(a) ], it is instructive to

predict some of the features of this equation. Suppose

we choose to write the transverse resonance equation

in terms of the admittances at Zo, the midpoint of

the slab. With this choice, the total admittance is

given as the sum of the admittances Y(xO; HO) and

Y(xO; HO) = Y(XO; – 110). Thus, while each of these ad-

mittances depends on the direction of Ho, their sum is

independent of this direction. We therefore expect that

the secular equation will be an even function of V.22.Also,

since reversing the direction of 110 is equivalent to a

180° rotation about the x axis, the secular equation

must contain only even powers of 8. These requirements
are evidently satisfied by the secular equation

For a sufficiently thick slab, i.e., for k8Qm sufficiently

large, the two interfaces should behave independently.

That this is the case is verified by noting that in the

thick slab Hmit (18) becomes

lb F. R. Morgenthaler, “Transverse impedance transformation for
ferromagnetic media, ” PROC. IRE, vol. 45, p. 1407; October, 1957.
The time depender+ce assumed in this reference is exp (jot) not, as in
this paper, exp ( —zoJt): Note that-the term following the plus sign in
the. numerator of the right hand side of (4) of this reference has been
omitted. The omitted term IS simply the quantity j.
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(Q.+$+~)(Qa+$-~)=O. (19)

This equation shows clearly that each interface of a

thick slab supports a pair of surface waves whose propa-

gation constants are either those in Fig. 6 (for the inter-

face at x= *6) or the negatives of those in Fig. 6. With

certain minor modifications, 13 this conclusion is valid

for any slab thickness throughout most of the range in

which the surface waves propagate. The conclusions

noted above are summarized in the sketches in Fig. 9.

Note that the curves labeled RH in Fig. 9 are practi-

cally identical with those in Fig. 6(a) except in the imme-

diate vicinity of uS. Note also that the low-field cutoff

point (al’) indicated in Fig. 9 is not simply related to the

corresponding point (uJ in Fig. 6(a).

The behavior of the infinite propagation constants

will play a significant role in the discussions which fol-

low. For this reason, it is pertinent to establish that, for

any slab thickness, 6 approaching both t co are proper

solutions of (18) for u-+u~ from above. We recall that VI

is finite in the neighborhood of us and therefore 624 ~

implies OS= Q.z = Q%2-+ ~. Thus, for 0 approaching

either ~ w, (18) maybe approximated by

( )cothkblol=–: I+&– L = h(a) (20)
Vlz V22

where, since Q. must be positive, we have replaced

Q.by I o] and, since Q~ coth k8Q~>0 for Q~?o, we have
replaced this term by 10 I coth k 810] . Therefore, O+ ~ co

are both allowed solutions when k(u) ~1 from above or,

as is evident from Fig. 10(a), as U--W3 from above.

In turning now to the analysis of the structure in Fig.

8(b) we are, in effect, asking the following question.
what is the effect on the surface waves guided along a

ferrite slab of locating one side of the slab near a short

circuit? So long as we are interested only in the region in

which 10 I is very large, the answer must be that the

short circuit will have very little effect since the surface

waves are very tightly bound to the two interfaces. In

particular, we certainly expect that for any d# O the

surface-wave propagation constants must still approach

both + co as U+U3 from above. To verify that this is

indeed the case, we employ the transverse resonance

procedure described earlier to obtain

Q.Q.
Q.2 coth kdQ. + (1+ coth kdQJ — coth k8Q~

+ (1 – coth kdQ.) @ + g –~=o (21)
V2 U12 VL32

as the secular equation for the waveguide shown in

Fig. 8(b). It is immediately evident that as Qa~ ~ with

d% O this equation reduces to (18). This verifies the as-

sertion made above concerning the imfinite solutions to

(21) in the neighborhood of ISS.Suppose now that the

right hand interface of the structure in Fig. 8(b) is al-

a

, ~

-.. ~ ,,H

up----!-...;.1 –-–-r-––--––--––- q––-––
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Fig. 9—Propagation constants for surface waves 0:1
a ferrite slab in free space,
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lowed to recede to infinity. The surface waves which the

resulting structure would support would be those of the

left-hand interface modified by the presence of the short

circuit. It is evident that in this case we would find, for

any d# O, that there sti~l exists an infinite solution

(O++ co only) as a~cr, from above. On t“he other hand,

if we set d = O and so obtain the structure in Fig. 8(d)

the surface waves must vanish completely since, as can

readily be shown,~j this structure will not support a

surface wave. The discontinuous behavior noted here

implies that a similar discontinuous behavior will be

found in the comparison of the behavior of the surface

waves for the structures in Figs. 8(b) and 8(c).
When the ferrite slab is against the short circuit

[see Fig. 8(c) ], the secular equation is obtained by set-

ting d = O in (21). This yields2’17

17 R. L. Pease, “On the propagation of surface waves over an in-
finite grounded ferrite slab, ” IRE TRANS. ON ANTENNAS AND F’~oPA-
GATIONt vol. 6, pp. 13–21; January, 1958. Pease discusses the sokl-
tions to thk equation in the thin slab approximation.
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Q.
Q.+ — coth k8Q. – ~ = O. (22)

VI V2

To investigate the infinite solutions of this equation,

we proceed as we did in connection with (20) and, for

]0] ~ co, approximate this equation by

The A sign which appears in this equation (associated

with O+ f co) results from replacing O by f 10 I accord-

ing as O? O. It is evident from (23) that O++ ~ are al-

lowed solutions of (22) only for ~f (a) +1 from above.

Sketches of these two functions are shown in Fig. 10(b).

An examination of these sketches makes evident that
o-+ m will be a solution for U+crz from above whereas

the solution O+ — co occurs, as before, for U-W3 from

above.

We have now arrived at the major result of this sec-

tion. We saw earlier that when the ferrite slab was ar-

bitrarily close to but not at the short circuit, ie., in the

limit as d40, there were two infinite solutions allowed,

both occurring for U---WSfrom above. These two infinite

solutions are shown in Fig. 11(a). On the other hand,

when the ferrite slab is at the short circuit, i.e., at the

limit d = O, there are still two infinite solutions, but the
o++ w solution is suddenly found at c-x72 from above

instead of U+US from above. The two infinite solutions

in this case are shown in Fig. 11(b). The discontinuous

behavior of the O++ co solution is evident from a com-

parison of Fig. 11(a) and (b). This discontinuous be-

havior will play a significant role in the discussions

which follow.

THE TEno PROPAGATING MODES OF THE SLAB

LOADED RECTANGULAR WAVEGUIDE

The secular equation determining the propagation

constants of the TE~o modes of the waveguide in Fig.

1 is2.1G

‘q. cot II(1 – A)q. + E cot KAqrn – ~ = O (24)
U V2

where the dimensionless parameters K and A are de-

fined as

-8
K= ka=2r~; A=— (O~A <l). (25)

a

For the propagating modes, 6 is real while qa,~ may be

either real or imaginary. Since the secular equation is an

even function of both q. and q~ we may, without loss of

generality, prescribe that these be positive when they

are real and that Im g=, q~ >0 when they are imaginary.

Very little has been published concerning the com-

plete set of propagating mode solutions of (24). Some

data has been given for a few special choices of the param-

eter values.2 In addition, for thin slabs, perturbation

e @

k’:‘
\ \
! ‘.. ... I

a
:2

s

~ :3 73

1.
, ..
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/ “

[

(a) (b)

Fig. 1I—Infinite propagation constants for surface waves on a
ferrite slab near a short circuit. (a) d40. (b) d=O.

formulas are available’’’” in which the solutions to (24)

are obtained as first-order perturbations about the prop-

agation constants of the empty waveguide.

The analysis which follows is confined to the behavior

of the propagation constants at a fixed frequency as a

function of the dc magnetic field and the normalized

slab thickness. It is convenient to assume that this fixed

frequency is such that T <K < 27r, i.e., such that the

empty waveguide propagates only the TE1o mode. It
will become evident as we proceed that this does not

seriously restrict the generality of the conclusions we

will draw.

Since the secular equation (24) is transcendental, we

cannot obtain its solutions in closed form. The results

presented below were obtained by a combination of

analytical and graphical investigations, the details of

which are given elsewhere.7 In the following, the dis-

cussion will be primarily descriptive rather than de-

ductive.

The propagating TEno modes of the waveguide in

Fig. 1 are of two kinds, a “surface-wave mode” bound to

the interface at x = 8 and the ‘(ordinary waveguide

modes. ” The latter are the modes whose properties can

be understood (except for the effect of the ferrite aniso-

tropy) by assigning to the ferrite slab an equivalent di-

electric constant of WI. We expect that, except for A~l,

the characteristics of the surface-wave mode will be

very similar to those described earlier for the waveguide

in Fig. 8(c). It is therefore not surprising that, by follow-

ing the procedure employed in connection with (23), we

again find that for 02> CPI (so that qa and q~ are both

imaginary for 02+ co) there are precisely two infinite O

solutions and that these occur as follows: (a) O++ cu as
u4u2 from above; (b) f?-+ — ~ as a-us from above.

To justify the statement that WI plays the role of an

effective dielectric constant in determining the proper-

ties of the ordinary waveguide modes, we point out,

first, that the relationship between 62 and q~z involves

only evt. Further, we note that the modal propagation

n B. Lax K. J. B Utkm, and L. M. Roth, “Ferrite phase shifters

in rectangul~r waveguide,” .?. Appl. Phys., vol. 25, pp. 1413-1421;
November, 1954.



7960 Bresfer: Modes of a Ferrife Loaded Waveguide 91

constants for the completely filled ferrite loaded wave-

guide (i.e., for A =1) are given bylg

f)=+,-(;) ,,=1,3. (26,

Finally, we note that the only place in which v~ has ap-

peared so far is in the linear term in 6 in the secular

equation (24). In the isotropic limit, i.e., for Vzs cu, this

secular equation reduces to one which is very similar to

the one which would apply for a dielectric slab with di-

electric constant CV1. Now, for r < K < 27r, the empty

waveguide (A= O) propagates only a single pair of

modes (two TEIO modes, one in each direction along z).

It is evident from (26) that the number of pairs of

modes propagated by the completely filled waveguide

depends on WI. For VI <0, no modes may propagate, and

therefore increasing the slab thickness will tend to cut

off the modes which propagate at A = O. This will also be

true for VI> O, but .wl < (~/Ar) 2. On the other hand, for

w positive and large, the completely filled waveguide

will propagate many pairs of modes and therefore in-

creasing the slab thickness should have the tendency to

increase the number of propagating modes. We recall

that VI approaches infinity in the neighborhood of U5.

From the remarks above, we conclude that, except for

the surface-wave mode, the slab loaded waveguide

must become completely cut off as V1- — co, i.e., as

u~o-5 from below. On the other hand, we expect to find

a large number of propagating modes for VI-+ ~, i.e.,

as a-wb from above.

It was noted earlier that, subject to the restriction

@z> WI, there are precisely two infinite 6 solutions to

(24). The indicated restriction need not apply when

vl~+ co. Suppose then we assume that VI and 02 are

both large, but such that WI – Oz>0. In this case, for

A% O and A# 1, we may approximate (24) by

() 1 l_
IT— 161+—~=1–02cotKA~wl –02=0

——

V2 VI

(0 ~ O). (27)

This equation is satisfied by many (large) values of 0,

both positive and negative. The solutions are located

approximately at the poles of the cotangent function.

Finally, in the limit as vl~ CTJ,f)j~ co, subject to

ev~—82>0, we find an infinity of positive and negative

infinite solutions for 0. These solutions represent surface

waves which are bound to the ferrite-air interface on the

air side only. The existence of such surface waves was

ignored in the discussions above since these were con-
cerned with surface waves which could exist on a single

isolated interface. Since we have now determined the

admitted infinite O solutions for both 02> w and 02< WI

“Theory of wave propagation in a gyromagnetic
me~uprn,~” ~Ee~t&j. phy~., VOI. 28, pp. 3–17; January, 1956.

(with A= O and A = 1), these must constitute the com-

plete set of infinite solutions.

The restrictions A # O and A # 1, noted in the preced-

ing paragraph, do not represent a meaningless quibble.

To see why this is so we note that the surface-wave

modes cannot exist for either A = O or A = 1. How does

the surface wave mode disappear as A~O and A–~1 ?

One way in which this can be accomplished is to have

the surface-wave mode disappear via 19za w. To inve:jti-
gate this possibility, we note that when I o I + ~ and

A-O (the product A 16 I remaining finite and nonzero)

the secular equation (24) may be approximated by

coth KA IO\= ~K–Pl=~JU) (L9~ O). (28)
V2

Similarlyj when I d] ~ co and A~l (the product

[1 –A] I d] remaining finite and non-zero), the secular

equation (24) may be approximated by

coth K(I –A) IO] = + ~ –-A-= gt(u) (6 ~ O). (29)
V2 n

We therefore conclude that, for A-+0, infinite solutions

for 6’exist only when ~~(a) z 1 while, for A-+1, such solu-

tions

Figs.

tions

are admitted only when g~ (u) ~ 1. Examination of

10(b) and 12 makes evident that the infinite solu-

uncler consideration can occur only as fo I1OWS:

range of a CT2<U <173 u3<c7<cr5

for A+O O++CC @+:& ~ ‘(30)

for A~l 0+–. no infinities.

The next step in the analysis is concerned with the

determination of the conditions for cutoff. For 6’= O,

the secular equation (24) becomes

%G
cot K(1 — A) + —— cot KA v“=l = O. (31)

VI

The values of VI required for cutoff are readily deter-

mined at those values of A for which cot K(I —A) is

either zero or infinite as follows:

for A = 1 – mT/K,

n’ K

()

–2

vl=— ——m;
en-

for A = 1 – (2w + l)7r/2K,

(2}z+ 1)2 K 29n + 1 ‘2 ,nd VL4
VI =

(4E~–2– )
– ~. (32)

In each case, m = O, 1, 2, . , . up to the largest integer
for which A>O and n=O, 1, 2, , . . . Fig. 13 shows

sketches of the values of V1 at cutoff as a function of A

for K = 1.52r and c = 10.20 Points which were actually

‘ZOThe value chosen for K is appropriate for, RCZ .52/U rectangular

waveguide (inner dimensions 0.4 inch xO.9 inch) at 10 kmc.
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Fig. 12—The functions g~ (u).
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Fig. 13—ZJI at cutoff (0= O) as a function of slab thickness

(K = 1.52x-, c = 10).

computed are indicated by the small circles. The curves

are numbered according to the order of the modes of the

completely filled waveguide starting with n = 1 for the

first mode which cuts off at a positive (non-zero) value
of vl. The additional n = O (or VI = O) solution at A = 1 is

identified as being associated with the surface-wave

mode. Points on the curves labeled n =2, 3, 4 which lie

in the shaded band are of no significance since values of

VI in the interval 1 —p <VI< 1 do not occur. The bottom

of this band (VI= 1 —p) corresponds to a = O, the top

(vI =1) to as co. Since the cutoff characteristics depend

on V1only, a scale of numerical values for u need not be

given unless we choose to specify p. Therefore, in Fig.

13 we content ourselves with merely indicating the di-

rections in which c increases from zero to Ub and de-

creases from infinity to U6.

There is a strong temptation to interpret the curves

in Fig. 4 as follows. The mode corresponding to any one

curve is either propagating or cut off according to

whether the point representing the values of VI and A

lies “above” or “below” the curve.’1 While this inter-

pretation does provide a rough idea of the conditions

required for a particular mode to propagate, it is not

strictly valid. The interpretation would be completely

valid if the 0 vs a characteristics for fixed A (or, equiva-

lently, the O vs A characteristics for fixed a) were sym-

metrical about the 6 = O axis and were such that the

poles of the derivative of (?with respect to ~ always coin-

cided with O= O. The need for these reservations be-

comes apparent from an examination of the results indi-
cated in, e.g., Fig. 17. Also, we remark that the curves

in Fig. 13 give no indication of the erratic behavior of

the solutions to (31) in the limit as A-O. Therefore,

they should not be used as a basis for a discussion of the

cutoff characteristics in the immediate vicinity of A = O.

The segment of the n = 1 curve shown with an ex-

panded V1 scale at the top of Fig. 13 reveals that A (vJ

for cutoff is multivalued for small positive ~vl. Presum-

ably, this may also be the case for other values of n in

the range of sufficiently small Eul. The significance of this

multivalued character becomes evident from a study of

Figs. 14 and 15.22 The curves in Fig. 14 are for UI <O so

that the only propagating modes are the surface wave

mode (n= O) and the perturbed empty waveguide mode

(n= 1), The curves for both lmodes exhibit only the sin-

gle cutoff predicted in Fig. 13. The manner in which the

surface-wave mode disappears for A*O and A+l is con-

sistent with the information given in (30). When VI

takes on small positive values corresponding to values of

a in the interval O< a <1 —p the surface wave mode is

still admitted for A # O, 1. The empty waveguide still

propagates only the TEIO mode and, for sufficiently

small VI, the completely filled waveguide does not sup-

port any propagating modes. Now, it is evident from

(30) that infinite solutions for O are no longer admitted

with either A*O or Aal. Therefore, the only way in

which the surface-wave mode can disappear at A = Oand

A = 1 is to have the O vs A curve for this mode close on

itself. This is precisely what happens in the curves

labeled a and b in Fig. 15. In closing on itself, the 6 vs

A curve passes through 9 = O twice. Thus, the three

values of A at which Fig. 13 predicts that O will equal
zero are all accounted for. As VI is increased, the two

separate 6 vs A curves join to form a single continuous

curve. This situation is illustrated by curve c of Fig. 15.

When V1 is increased further to a value such that the

completely filled waveguide will support one pair of
propagating modes, the single curve c splits at A = 1 to

become the two continuous curves labeled d.

21 In thi5 ~onnection, the adjective ‘fabove” k to be interpreted

as implying “above and/or to the left of” for curves which vanish
via ul~ — m and “above and/or to the right of” for the curves on
which V1 tends to + co.

= Data for these curves was obtained by a graphical procedure
described by Bresler (ref. 7).
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Fig. 14—Propagation constants as functions of the slab thickness

(K = 1.52~, e = 10, P = 1).
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Fig. 15—Propagation constants as functions of the slab thickness

(K = 1.527, e = 10, P = 0.8).

(a) a = 0.190, PI = 0.0245, VZ= 0.0249.

(b) a = 0.1877, n = 0.0300, v~ = 0.0305.

(C) u = 0.1822, n = 0.0433, Vz = 0.0444.

(d) a = 0.1567, v, = 0.100, vz = 0.106.

When VI is increased still further beyond the values

employed in Fig. 15, additional propagating modes ap-

pear at A = 1 and will propagate for all values of A down

to approximately the cutoff value given in Fig. 13. As

soon as VI becomes reasonably large, the surface wave

mode is no longer propagated by the ferrite-air inter-

face, and therefore we are no longer required to account

for either its presence or the manner of its disappear-

ance at A = 0, 1. Sketches of a typical set of 0 vs A curves

for a reasonably large value of ~v~ are shown in Fig. 16.
The sketches shown in Fig. 17 illustrate the behavior

of O as a function of a for fixed A. Certain essential

features of these sketches (data concerning the surface-

wave mode, the behavior at cutoff and the infinities in

0) follow directly from the results given above. Two

other essential features (the slopes of the curves at

O= Oand the absence of maximum and minimum points)

9,
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Fig. 16—S1<etches of 6 vs A for K = 1.527r, e= 10, VI==2.
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Fig. 17—Sketches of@ vs c for K=I.52 ~, e= 10, p=O.8.

(a) A ~ 0.2. (b) A = 0.3. (c) A = 0.5. (d)A = 0.9.

will be justified by the analysis presented in the next

section.

The sketches in Fig. 17 are proportioned to corre-

spond roughly to K=l.52r, E=1O and p= O.8, In Fig.

17(a), the region between the U5 ordinate and the n = 5

curve is shaded to indicate that this regic~n contains an
infinity of propagating modes for each of which O+. + ~
as a--wb from above. The region corresponding to

a > U6 is not reproduced in Fig. 17(b), (c), (d) since the

basic characteristics of the 6 vs u curves in this interval

do not change with A. In the interval O<c <u5 the

n = O and n = 1 curves are shown for four different values

of A. The remainder of this paragraph is devoted to a

simplified explanation for the behavior ex”hibiteci by
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these sketches, For the values of p and c involved, an

isolated ferrite-air interface would support a surface

wave with 6>1 throughout the interval O< ~ <c4 where

U4> uZ. With the finite thickness slab, the effect of plac-

ing the slab against a short circuiting wall is to convert

the ~t ordinate into a barrier which the d vs u curve for

the surface wave may not cross and at which I!?++ w

as U-WZ from above. However, a study of Fig. 17 re-

veals that even with the smallest value of A employed

(i.e., when the effect of the short circuit should be most

pronounced) the surface wave reasserts itself as a ap-

proaches zero and distorts the n = 1 curve so that part

of this curve constitutes a continuation of the gently

sloping portion of the n = O curve. As A is increased so

that the effect of the short circuit is diminished, the gap

in the surface-wave characteristic between the n = O and

n = 1 curves is likewise diminished. The gap does not dis-

appear completely because the infinity at OZis required

for any finite slab thickness.

THE POWER FLOW ASSOCIATED WITH THE

PROPAGATING MODES

In an earlier papere the author employed a matrix

formulation for the Maxwell equations to deduce a re-

lationship between the power flow associated with a

propagating mode in an arbitrary dissipationless uni-

form waveguide and the frequency derivative of the

propagation constant of this mode. For our purposes

here, we require an analogous relationship involving

the derivative of 6’ with respect to a when p and w (or

k) are held constant. By a procedure which parallels

that employed in connection with (18) through (24)

of the paper j ust cited,G it can be shown that the required
relationship is

2P.0a’ = SsHa* y’. H.dS (33)
s

where 0. is the (normalized) propagation constant of a

particular propagating mode, Pa is the (real) power

flow associated with this mode, H. is the total magnetic

field of this mode, v is the tensor permeability of the fer-

rite slab, the prime superscript indicates the derivative

with respect to IS and the required integration is to be

carried out over the cross section, S, of the waveguide.
Pa is defined so that it is positive for power flow along

+z. The result in (33) is obtained when the modes are

normalized in the manner indicated in the reference

cited earlier.b Also, to obtain (33), we must exploit the

fact that the boundary conditions at the waveguide

walls, the (scalar) permittivity of the ferrite and both

the (scalar) permeability and permittivity associated

with the empty waveguide regions are all independent

of ~.

For the TE.O modes, H. has nonzero components

only in the plane transverse to y (i.e., to ZIO). Therefore,

for these modes, we introduce the subscript T to dis-

tinguish quantities confined to this transverse plane

and rewrite (33) as

2P.ow’ =
Ss

HT.* .yTf . HTJS. (34)
s

For a dissipationless ferrite, &2’ is a hermitian matrix,

and therefore its derivative with respect to u is also

hermitian. Moreover, it is readily verified that (for

fixed p and k) this derivative is negative definite when p

is positive. It then follows from (34) that for the TE.O

modes here under consideration

Pea’ <0 for p>o (35)

so that, for positive p, P. ~ O according as O.’ ~ O. Fur-

thermore, we see that Pe may equal zero only at the

poles of O.’. This means that the power flow associated

with a propagating mode can change direction only

where Oaf is infinite. A further important interpretation

of (35) is the recognition that 19ti’can not equal zero un-

less Pa becomes infinite. There is no difficulty in exclud-

ing the latter possibility in the case of closed wave-

guides, and we therefore conclude that 0.’= O cannot

occur; i.e., that the O vs c curves cannot exhibit maxi-

mum or minimum points.

In the sketches in Fig. 17 we have indicated that the

poles of 9.’ do not ordinarily occur where e.= O. This

statement is verified by noting that Pm is zero only at

the poles of da’ whereas it can be shown that7 at 8.= O

sin KA ~~1 2
P.=–<

Kvj ( )V’G “
(36)

Thus, for 6.= O, we find that Pm ~ O according as vts O.

It then follows from (35) that, at O. = O, 0.’ ~ O according

as VZ~ O. The availability of this last result eliminated a

good deal of the guesswork which would otherwise have

been involved in connection with the sketches in Fig. 17.

CONCLUSION—RESOLUTION OF THE

THERMODYNAMIC PARADOX

It is evident from Fig. 17 that the possibility of the

existence of only a single TEno propagating mode for

the waveguide in Fig. 1 arises only from the fact that

there is a nonvanishing interval between the values

of c at which f?++ ~ and d+ — ~ for the surface-wave

mode. It is further evident that if this interval did not

exist there would always be an even number of propa-

gating modes. The results obtained in the preceding

section, in particular, that in (35), make evident that

this even number of propagating modes would a~ways

divide so that half transported energy in one direction

along z, half in the other. This observation clears the

way for the resolution of the thermodynamic paradox.

It is reasonable to expect that the discontinuous be-

havior illustrated in Fig. 11 will also be evident for the

surface-wave modes of the waveguides in Figs. 1 and 18.

To verify this conjecture we note that the secular equa-

tion for the TE.O modes of the latter waveguide is18
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where D = d/a. The reader may verify that for any d+ 0,

however small, this equation admits both d+ L m as

solutions for a~us from above, and does not admit
O-+ m as a solution in the neighborhood of IJz. He may

then further verify that, except for the discontinuity

already referred to, all other solutions of (37) pass con-

tinuously into solutions of (24) in the limit as d-+0. It

will then be evident that in the limit as d--+O, the

sketches in Fig. 17 serve to describe all the modes of the

waveguide in Fig. 18 except the n = O mode. A study of

Fig. 11 makes evident that the Ovs a curve for then= O

mode of the waveguide in Fig. 18 will be that illustrated

in Fig. 19. Finally, when we combine the results given

in Figs. 17 and 19, we see that for any d#O and, in par-

ticular, in the limit as d40, the waveguide in Fig. 18

will always support an even number of propagating

TEno modes. To establish that this conclusion is valid

for values of K outside the range IT< K < 27r, we need

only recall that the locations of the infinities in 19are

independent of K.

The conclusion to which we are led is now evident.

We have seen that if we accept the solutions of the

secular equation (24) as constituting the correct de-

scription of the propagating TE.o modes of the wave-

guide in Fig. 1, then we are led inescapably to a thermo-

dynamic paradox. On the other hand, for any d# O and,

in particular, in the limit as d-+0, the solutions of the

secular equation (37) do not, a Pr’iori, give rise to any

thermodynamic difficulties associated with the TEfio

spectrum of the waveguide in Fig. 18. These considera-
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Fig. 18—Ferrite slab loaded rectangular waveguide
(slab away from waveguide wall).

—

tions lead us to assert that the TE.O mode propagation

constants for the waveguide in Fig. 1 must be obtained

from the solutions of the secular equation (37) in the

limit d-+0 and not from the secular equation (24), i.e.,

not from the secular equation which obtains at the limit

d = O. We assert further that when this is done there

will. no longer exist any basis for construction of a ther-

modynamic paradox associated with the waveguide

in Fig. 1.

The conclusion just stated may be criticized on the

grounds that while it tells us how to avoid thermody-

namic difficulties, it does not tell us why such difficulties

are encountered. Anticipating such criticism, we clffer

the following remarks in our defense. The-problem we

have been considering is an idealization of a physical

reality. Let us recall some of the idealizaticms which

were implicit in our formulation of the problem. Tlhus,

we have been considering absolutely dissipationless

waveguides bounded by perfectly conducting walls and

loaded with uniformly magnetized homogeneous ferrite

slabs contained within sharply defined planar boundar-

ies. All these idealizations are widely employed in the

formulation of electromagnetic problems and we accept

them on the basis of the implicit assumption that the

solutions to these idealized problems represent the be-

havior of a physical system in an appropriate limiting

sense. TO speak of the ferrite slab in Fig, 18 as being

against the waveguide wall is to describe a physical

situation for which we can not ordinarily distinguish

between the mathematical descriptions d = O and the

limit as d40. Given two different but equally accept-

able mathematical idealizations for a physical situation,

we are often called upon to distinguish between these

idealizations by the physical content of the solutions to

the problem which they yield. Thus, in our problem, we

find that the two idealizations d= O and d-~0 lead to

distinctly different solutions. Without asking why this

difference arises, we are justified in choosing between

them on the basis that the idealization which leads to a

thermodynamic paradox must be discarded.

Fig. 19—0 -m a for the surface wave mode of the
waveguide in Fig. 18.
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