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On the TE,, Modes of a Fertite Slab Loaded

Rectangular Waveguide and the Associated
Thermodynamic Paradox”
A. D. BRESLER}

Summary—It has been known for some time that the secular
equation for the TE,, modes of a perfectly conducting rectangular
waveguide loaded with a transversely magnetized dissipationless
full height ferrite slab located against one of the narrow walls of the
waveguide admits the possibility of the existence of only a single
propagating mode (transporting energy in one direction only). In this
paper, it is established that if we admit the existence of a passive
dissipationless uniform waveguide supporting only a single propagat-
ing mode we are led inescapably to a thermodynamic paradox. A
uniqueness theorem is cited to establish that, for the waveguide
described above, the paradox is associated with the TE,, mode set
alone. This conclusion motivates a thorough study of the secular
equation for the TE,, modes of this waveguide. This study is initiated
by an investigation into the properties of the TE,, surface waves
guided along a plane interface separating a transversely magnetized
dissipationless ferrite from free space. It is shown that two oppositely
directed surface waves are guided along this interface. These two
surface waves are admitted in different finite ranges of the parameter
values which never coincide and which may or may not overlap. Each
of the two surface waves has both a high- and alow-frequency cutoff
and, in general, both a high and a low dc magnetic field cutoff, The
propagation constant of one of the surface waves becomes infinite at
the low field (high-frequency) cutoff. The next step in the analysis
consists of an examination of the behavior of these surface waves on
finite thickness ferrite slabs located in different environments. It is
shown that when one of the two interfaces bounding the slab ap-
proaches a short circuit the infinite propagation constant noted above
behaves in a peculiar discontinuous fashion. Next, the TE,, mode
secular equation of the slab loaded rectangular waveguide is analyzed
and information is developed leading to a description of the behavior
of the propagation constants of all the propagating TE,, modes. This
analysis reveals that the possibility of the existence of only a single
propagating mode is associated only with the surface wave mode of
this waveguide. A resolution for the thermodynamic paradox is pro-
posed based on the discontinuous behavior of one of the infinite
propagation constants associated with this surface wave mode. It is
shown that with a properly chosen secular equation for the waveguide
under consideration there are always an even number of TE,, prop-
agating modes, half of which transport energy in one direction, half
in the other. This demonstration is based, in part, on an analysis lead-
ing to relations between the direction of the power flow associated
with a propagating mode and the derivative of its propagation con-
stant with respect to the dc magnetic field.
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InTRODUCTION—THE THERMODYNAMIC PARADOX
THIS PAPER is concerned with a study of the TE,q

modes! of a perfectly 'conducting rectangular

waveguide loaded with a full height ferrite slab
located against one of the narrow walls of the wave-
guide. The ferrite slab is uniformly magnetized in the
transverse direction indicated in Fig. 1. As part of this
study, we will examine the properties of the TE,o sur-
face wave modes guided along the plane interfaces
separating transversely magnetized ferrite slabs from
free space. While these studies are of interest in their
own right, they also have a further significance which
will now be made evident by a statement of their moti-
vation.
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Fig. 1—Ferrite slab loaded rectangular waveguide
(slab against waveguide wall).

Some time ago, Lax and Button? pointed out a curi-
ous phenomenon associated with the spectrum of the
waveguide whose cross section is shown in Fig. 1. They
found that the secular equation determining the propa-
gation constants of the TE,, modes of this waveguide
admitted the possibility of the existence of only a single
propagating mode (transporting energy in one direction
only). The obvious implication is that this waveguide
can be used to construct an ideal one way transmission
system. If this were really possible, it would constitute a
clear violation of the basic laws of thermodynamics. In

1 These modes are characterized by the absence of any variation
along the direction of the dc magnetic field, Ho, and by the fact that
the electric field is parallel to Hy. The locations of the conducting
planes normal to the y direction are therefore of no significance. For
a description of the field components see, e.g., H. Seidel, “Ferrite
slabs in transverse electric mode waveguide,” J. Appl. Phys., vol. 28,
pp. 218-226: February, 1957,

2 B. Lax and K. J. Button, “Theory of new ferrite modes in rec-
tangular waveguide,” J. Appl. Phys., vol. 26, pp. 1184-1185; Sep-
tember, 1955, Also, “Theory of ferrites in rectangular waveguide,”
IRE TRrRANS. ON ANTENNAS AND PROPAGATION, vol. AP-4, pp. 531~
537; July, 1956.
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an attempt to resolve this difficulty, it has been argued?*
that the power flow in the reverse direction takes place
via the cutoff (nonpropagating) modes and that there-
fore no thermodynamic difficulty actually exists. We
will now show that the cutoff modes do not provide a
satisfactory mechanism for the resolution of the para-
dox. This demonstration will not be restricted to the
special case of the waveguide described previously.

To establish that the existence of a passive dissipa-
tionless uniform waveguide supporting only a single
propagating mode does indeed constitute a violation of
the basic thermodynamic laws, we note the following.
First, we recall that in a dissipationless waveguide only
the propagating modes (considered individually) carry
power.? The cutoff modes take part in the mechanism
of energy transport only through the coupling between
two modes associated with complex conjugate propaga-
tion constants.® Now, consider the junction of the two
dissimilar uniform waveguides illustrated in Fig. 2. In
an earlier paper,® the author has shown that when this
structure is excited from the empty waveguide side the
fields to the right of the junction plane will consist of a
superposition of only those modes which, if propagating,
transport energy to the right (i.e., along +2) or, if cut
off, decay exponentially with increasing z. Thus, only
one of the two modes associated with a pair of complex
conjugate propagation constants is excited at the junc-
tion plane and therefore the cutoff modes play no role
in the transport of energy away from the junction.
Finally, suppose that the waveguide to the right of the
junction plane supports only a single propagating mode
which (without loss of generality) is assumed to trans-
port energy to the right. The incident wave shown in
Fig. 2 would then excite this single propagating mode
along with an infinity of cutoff modes which all decay
with increasing z. Therefore, for 23>z’ and increasing,
the fields in the waveguide approach ever more closely
to the propagating mode fields.

Now let a short circuit termination be introduced into
the waveguide at some z>>z’. Since there are no prop-
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Fig. 2—Junction of two dissimilar uniform waveguides.

¢ B. Lax, Chairman, “Combined panel session on propagation in
doubly-refracting media and future directions for research in electro-
magnetic wave theory in modern physics,” IRE TRANS. ON AN-
'fgé\rélms AND PROPAGATION, vol. 4, pp. 567-577 (esp. 573-576); July,

¢ M. L. Kales, “Topics in guided wave propagation in magnetized
ferrites,” Proc. IRE, vol. 44, pp. 1403-1409; October, 1956. The
discussion referred to appears on p. 1408.

8 A. D. Bresler, G. H. Joshi, and N, Marcuvitz, “Orthogonality
properties for modes in passive and active uniform waveguides,” J.
Appl. Phys., vol. 29, pp. 794-799; May, 1958.

§ A. D. Bresler, “The far fields excited by a point source in a pas-
sive dissipationless anisotropic waveguide,” IRE TraNS. oN Micro-
WAVE THEORY AND TECHNIQUES, vol. 7, pp. 282-287; April, 1959,
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agating modes which carry power to the left, only cutoff
modes will be excited at the short circuit. The ampli-
tude coefficients of these cutoff modes will be deter-
mined from the requirement that the net tangential
electric field at the short circuit must equal zero. Ad-
mittedly, some power transfer now takes place via the
coupling between pairs of cutoff modes which decay
with equal attenuations in opposite directions along
2.5 To demonstrate that this power transfer mecha-
nism cannot provide a proper power balance, we first
assume the converse; <.e., we assume that the net power
flow through the transverse plane just to the left of the
short circuit is equal to zero. This net power flow may be
written as Po+2Z P, where Py is the power flow associ-
ated with the single propagating mode and ZP; is the
net power flow resulting from cutoff mode coupling.
Each term in 2P; is proportional to the product of the
amplitude coefficients of a pair of cutoff modes char-
acterized by complex conjugate propagation constants
one of which is excited at the junction plane, the other
at the short circuit.b® Now suppose that the short cir-
cuit is moved a distance #A,y (7 is an integer, A, is the
guide wavelength associated with the propagating
mode) further away from z’. The fields incident on the
short circuit in the two locations are almost identical.
Thus, for either location, the set of modes excited at the
short circuit constitutes a modal representation (in
terms of a complete eigenfunction set) of a transverse
electromagnetic field whose electric field component
must be almost exactly the negative of the propagating
mode transverse electric field incident on the short cir-
cuit. Since the two short circuit positions are separated
by #Age, this latter field has equal amplitudes at the two
short circuit positions. Therefore, the amplitude coef-
ficients of the cutoff modes excited at the short circuit
are practically identical for the two locations. In travers-
ing the distance between the two short-circuit positions,
the cutoff modes excited at 2’ are attenuated by the fac-
tor exp (—amhg) where a;>0 is the attenuation con-
stant of the <th mode. Thus, if we now compute the net
power flow through the transverse plane just to the left
of the new short-circuit position, we find that Py is un-
changed while each term in ZP; is reduced by the factor
exp (—aunhg). Therefore Py+2P; is now unequal to
zero. We must therefore conclude that power transfer
via cutoff mode coupling cannot provide the proper
power balance. Thus, when we introduce the short cir-
cuit termination we are faced with a situation wherein
we are continuously pumping energy into a reactive
termination and no means exists for returning all of this
energy to the source. This clearly constitutes a violation
of the basic laws of thermodynamics. We are therefore
led to assert that a passive dissipationless uniform wave-
guide cannot support but a single propagating mode.
We are now faced with the problem of reconciling this
assertion with the known results cited earlier for the
waveguide in Fig. 1. In this connection, it is important
to recognize that when the discontinuity problem posed
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in Fig. 2 is that for an infinite rectangular waveguide
which is empty for 2<z" and which, for 2> 2!, is loaded
with a ferrite slab as in Fig. 1, then the paradox arises
even though it is the TE,y mode set of the slab loaded
waveguide which has only a single propagating mode.
This conclusion is based on a uniqueness theorem es-
tablished by the author? which states that if the fields
which excite the two waveguides are independent of y
(see Fig. 1) and are completely characterized by a single
non-zero component of electric field directed along v,
then the boundary value problem which has been posed
is actually a two dimensional problem and the total
field in the structure can be completely described in
terms of this single component of electric field. Thus,
when the incident mode indicated in Fig. 2 is, e.g., the
TE1¢ mode of the empty rectangular waveguide, only
TE,o modes will be excited at the junction plane and
we therefore may not look outside the TE,, mode set
to resolve our difficulty.

In casting about for a basis for resolving this paradox,
we reject the approach advanced by Seidel?+® which in-
volves the assumption of an “intrinsic loss” for a loss-
less ferrite medium and into which he introduces argu-
ments based on a consideration of the atomic model
from which the ferrite properties are deduced. Our atti-
tude is that such arguments seek to answer an electro-
magnetic question by considerations outside the frame-
work in which the problem is posed. To be more specific,
our attitude is that we are concerned solely with the
solutions to the Maxwell equations in a region contain-
ing an anisotropic medium for which we are given the
permeability dyadic. We do not need to know the atomic
model from which this dyadic has been deduced. We do
know that this dyadic satisfies the restrictions imposed
by the linearity, passivity, losslessness and time reversi-
bility requirements.®!® Under these circumstances, if
the solutions to the Maxwell equations give rise to
thermodynamic difficulties, the source of the difficulties
must be sought in the electromagnetic problem, not in
the atomic model.

As a consequence of the considerations outlined above
a thorough analysis of the TE,, modes of the waveguide
illustrated in Fig. 1 was undertaken. As a result of this
analysis, we will establish that with a properly chosen
secular equation for the waveguide in Fig. 1 there are
always an even number of TE,, propagating modes, half
of which transport energy in one direction, half in the
other. This will dispose of the thermodynamic paradox
associated with this structure. To accomplish this task,

7 A. D. Bresler, “On the Discontinuity Problem at the Input to
an Anisotropic Waveguide,” D.E.E. dissertation, Polytechnic In-
stitute of Brooklyn, Brooklyn, N, Y.; June, 1959. The dissertation
has also appeared as Res. Rept. No. R-716-59 of the Microwave
Res. Inst. of the Polytechnic Inst. of Brooklyn.

8 Seidel, op. cit.

? “Round-table discussion on design limitations of microwave
ferrite devices,” IRE TraNs. oN MICROWAVE THEORY aND TECH-
NIQUES, vol. 6, pp. 104-111; January, 1958,

10 B, S. Gourary, “Dispersion relations for tensor media and their
apg;ication to ferrites,” J. Appl. Phys., vol. 28, pp. 283-288; March.
1957,
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we will first show that the possibility of the existence of
only a single propagating mode is associated only with
the surface wave mode, i.e., the “ferrite-dielectric” mode
identified by Lax and Button.? In the discussion which .
follows, we will first examine the properties of this sur-
face-wave mode. This mode represents a true surface
phenomenon in that the amplitudes of its fields decay
exponentially away from the ferrite-empty space inter-
face on both sides of the interface. Therefore, the essen-
tial properties of this surface wave mode will be deter-
mined from a study of its behavior in the ferrite loaded
parallel plate waveguide, whose cross section is shown in
Fig. 3.
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Fig. 3—Ferrite loaded parallel plate waveguide.

DEFINITIONS AND PRELIMINARY CONSIDERATIONS

All field components are assumed to have the (sup-
pressed) time dependence exp (—iwi) where w is the
radian frequency. Since we will be concerned exclusively
with TE,, modes, all field components are independent
of 9. Since these modes propagate along z, the z depend-
ence for all field components in either the empty or fer-
rite loaded regions is taken as exp (ikz). The dependence
on x differs in the two regions. This dependence is taken
as exp (htk.x) in the empty regions and exp (& tkymx)
in the ferrite loaded regions. We adopt the convention
that both k., and k.. satisfly the restrictions k,> 0 if real
and Im k,> 0 if imaginary. The wave numbers k and &,
are related vial

K2 = k2 - kxa,z = k2€V1 - k,ar/m,Et

(1)

where k2 =w?uoe, mo and € are, respectively, the perme-
ability and permittivity of free space, € is the (relative)
scalar dielectric constant of the ferrite and »;, the (rela-
tive) effective permeability parameter for transverse
magnetization, will be defined more precisely below.

For the time dependence indicated above, the (rela-
tive) permeability tensor for a gyromagnetic ferrite sub-
jected to a uniform internal magnetic field applied
along y takes the form!*

poipe O
Yaozy = —ips m O (2)
0 0 1

where the subscripts on g indicate the cyclic order em-
ployed in the tensor representation. For a dissipation-
less ferrite, the dependence of u,0 on frequency, dc mag-
netic field (H,), and saturation magnetization of the
ferrite (47 M) is given by'!

11 H, Suhl and L. R. Walker, “Topics in guided wave propagation
through gyromagnetic media,” Bell Sys. Tech. J., vol. 33, pp. 579~
660; May, 1954, ’ ;
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1 —o(p+0) p
#1=~——1_02—" M2=1_02 (3)
where
p = — o= 0 (4)
@ w

and 7 is the magnitude of the gyromagnetic ratio.!?
Note that p and ¢ are defined so that at a fixed fre-
quency p is a constant of the material while ¢ is propor-
tional to the dc magnetic field. Eqgs. (3) are valid only for
saturated ferrites, 4.e., only when H; exceeds that value
required to produce saturation. Since the dc permeabil-
ity of most ferrites is very large, the value of ¢ required
for saturation is very small.’! Thus, whenever results
are stated for ¢ =0 these are understood to be valid
when ¢ approaches zero but remains larger than the
value required for saturation. Since Hp and 4734, must
have the same algebraic sign, it follows that the product
po is always positive. Therefore, a reversal of the dc mag-
netic field changes the sign of u» but does not affect p;.

For modes which propagate in a direction perpendicu-
lar to the dc magnetic field, it is convenient to express
all results in terms of the elements of the inverse u
tensor

1 1
— —i= 0
141 V2
1 1
pl=li— — 0 (5
Ve n
0 0 1
where
m?— 21— (p+0)?
Vl = ==
M 1 —alp+ o)
p? =’ 1 —(p+0)?
gy = BT : (6)
M2 p

It is evident that a reversal of the dc magnetic field
changes the sign of »; but does not affect »1. The param-
eters 1,2 and 7,9 are sketched in Fig. 4 as functions of
o for fixed p. These sketches therefore illustrate the be-
havior of the permeability as a function of the dc mag-
netic field for a fixed ferrite at a fixed frequency.

Certain features of the curves in Fig. 4 deserve com-
ment. First, since (3) and (6) are valid only for saturated
ferrites, we should not be disturbed by the fact that the
curves based on these equations do not indicate an iso-
tropic medium at o =0. On the other hand, Fig. 4 makes
evident that the ferrite becomes an isotropic dielectric
as ¢ approaches infinity. Next, we remark that at ¢ =1,
i.e., at the ordinary “gyromagnetic resonance,” the
parameters »1,2 do not display any resonance or, indeed,
any sort of unusual behavior. We will find that the point
o =1 has no significance for the surface wave phenom-
ena. Finally, two special values of o, a3, and o5 are indi-

2 y=35.6m for H, expressed in kilo-cersted, 4w}, in kilogauss and
frequency in kmc.
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Fig, 4—Ferrite permeability parameters,

cated in Fig. 4. At the latter, »; becomes infinite. At the
former, »; and »; both become zero, their ratio remaining
finite.

SURFACE WAVES AT A SINGLE INTERFACE

To obtain the secular equation determining the sur-
face-wave propagation constants, we employ a trans-
verse resonance procedure. For the structure in Fig. 3,

q
this requires a knowledge of the admittances ¥, and
P

V.. The former is simply the input admittance of an
infinite transmission line for a TE,, mode of an empty
parallel plate waveguide. If we choose to normalize the
fields so that the admittzir_l)ce for the TEM mode of this

waveguide is unity, then ¥, becomes

= kxa

V,= P (7)

We recall that the input admittance to an infinite modal
transmission line corresponds to the ratio of the ampli-
tudes of the transverse (to x) magnetic and electric
fields of that mode which propagates outward to infinity,
z.e., in this case, of the mode whose dependence onx is

given by exp (¢k..x). We obtain the admittance ¥V, via
a similar requirement for the ferrite loaded waveguide.
P

Thus, we define ¥, as the ratio of the amplitudes of the
transverse (to x) magnetic and electric fields for a mode
whose x dependence is exp (—¢k.n%). The admittance
—

Y. is then obtained as!

bl kzm K
Vo= — —f— (8)
kV1 kl/z

The secular equation is now obtained from the trans-
verse resonance requirement
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— — Gm g
Vot V=0 = got o — i — (9)
141 Ve
where we have introduced the normalized wave num-
bers

(10)

As it stands, the secular equation (9) is ambiguous be-
cause of the quadratic nature of the relationships in (1).
This ambiguity is resolved by recognizing that the fields
of a surface-wave mode must decay exponentially away
from the interface on both sides of the interface. There-
fore, we require that Im ¢,>0 and Im ¢, >0. Substitu-
tion from (1) into (9) now yields the following as the
secular equation in terms of 8 only:

I
VIZ @+ — o — F—i—=0
Vi

2
subject to
62> 1 Im+1—62>0
. (11)
6% > e Im /ey — 682> 0.

Since this is an algebraic equation, its solutions are
readily obtained in closed form and are subject to ex-
haustive analysis. In the following, we give the results
of such an analysis omitting most of the details of the
required algebraic manipulations which, while compli-
cated in detail, are quite straightforward.”!?

Solutions to (11) are obtained by squaring twice to
obtain a quadratic equation in 62 When »; and ». are
eliminated via (6) the solution to this quadratic is ob-
tained as

0.2 = !
o 2pwr — 1)
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curves in Fig, 5 represent surface-wave solutions. In this
discussion, we will make use of the information con-
tained in the equations in Table I, where certain values
of ¢ are distinguished and defined in terms of the fixed
parameters p and e. It is readily verified that, for p>0
and €>1, a>f implies 6.> 05 except that g3 may be
2 ¢4. Since the product of p and ¢ is always positive, it is
sufficient to consider only p>0 and ¢>0. Note that if p
and o are both replaced by their negatives, 4.e., if the
dc magnetic field is reversed, the only effect on the
solutions indicated in (12) is to interchange 6,2 and 6_2.
The restriction to p>0, 0>0 means that if any g« in
Table I is found to be negative for p >0, then that value
of ¢ is no longer significant, Z.e., can no longer be ob-
tained with the given ferrite at the given frequency.
From the information given in (12), Table I, and Fig.
5, it follows that surface-wave mode solutions may occur
only in the interval 0 <o <os. To justify this statement,
we note that 0.2 are both equal to or less than zero for
all ¢ > g6 so that the restriction in (11) is not satisfied. In
the interval o <o <gs, 84 are both complex. Surface-
wave modes with complex propagation constants are
not admissible. This is evident from the following con-
siderations. If a complex 8 is a solution of (11) then its
complex conjugate, 6%, must also be a solution. Suppose
that the g, and g, associated with ¢ are such that Iin
g.>0 and Im ¢,>0 so that 8 represents an admissible
surface wave-mode. It follows that ¢,* and ¢,*, asso-
ciated with 6%, are characterized by lm ¢,* <0 and Im
gn* <0. Therefore, 6* cannot be the propagation con-
stant of an admissible surface-wave mode. It can be
shown® that, in a dissipationless waveguide, complex
modal propagation constants must occur in complex

{(zﬂ —Dfp — (e = Du] + % e+ Du

£ g/ [ = =2 ][e- v -0 = S o]}

where # =1p-+o. The plus or minus subscript associated
with 02 distinguishes the solution with the corresponding
algebraic sign preceding the radical (understood to be
positive). Note that the solutions to the biquadratic
given here do not necessarily provide solutions to (11).
Such solutions result only when the restrictions indi-
cated in (11) are satisfied. Moreover, when a particular
62 given by (12) does provide a solution to (11), it will
satisfy the latter equation with only one or the other of
§ = ++/6%. Thus, the restrictions on the sign of the
imaginary part of ¢, and g.. serve to determine the alge-
braic sign of 6 appropriate to the particular solution.

A sketch of 8.2 as a function of o with p held fixed is
given in Fig. 5. We will now establish that only those
values of 04% lying on the solid line segments of the

1B A, D. Bresler, “TE, Surface Waves at Ferrite-Air Interfaces,”

Polytechnic Institute of Brooklyn, Brooklyn, N. Y., Microwave Re-
search Institute, Memorandum R-723-59; February 28, 1959.

(12)

conjugate pairs. Therefore, since we cannot admit 0 as
a proper surface-wave solution and exclude 6*, we ex-
clude all complex # from further consideration.

The outstanding feature to be observed in the range
¢ <oy is the infinite 6, % solution which obtains for o—0s.
This infinity is not associated with any peculiarity in
the ferrite parameters since both »;2(c3) are finite and
non-zero. Thus, this infinity might be described as a
“waveguide resonance” as opposed to a “medium reso-
nance.”™ Since a surface-wave solution must satisfy the
restriction 82> 1, it follows that the infirite propagation

14 The existence of this infinite solution in a ferrite slab loaded
rectangular waveguide and its characterization as a “waveguide
resonance” is noted by H. Seidel in ref. 1. Seidel gives the condition
for the existence of this resonance as w;=%v(Bo+Ho) where Bo=H,
4471, This is exactly equivalent to os=1—~%p. For the benefit of
readers more familiar with descriptions of critical points in terms of
By and H, we take this opportunity to point out that oz and o5 are

exactly equivalent to ws=yBo and ws=y+/BoH,, respectively.
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Fig. 5—404% as a function of & with p fixed.

constant at o3 may be associated with a surface-wave
solution only for o—0s from above. It is readily demon-
strated that 6.2 has only the single zero shown in Fig.

January

5 at oy and that #_2 has no zeros. In Table I it is indi-
cated that 0_2 passes through a minimum at ¢, and that
its value there is always one. With this information, we
conclude that surface-wave solutions may occur only on
the curve passing through the points labeled 4 through
E in Fig. 5.

We now assert that surface-wave mode solutions are
obtained only on the segments BC and DE (the solid
line segments) of the curve in Fig. 5. Moreover, we as-
sert that #_% on BC represents a solution such that
6_>1 whereas 8,2 on DE represents a solution such that
6, < —1. In the following, we will give only a brief out-
line of the analysis required to justify these assertions.'
To facilitate the discussion which follows we rewrite (11)
as

—_— Ve e
0=uw| 62 — 1| +—| 6" — enn]. (13)
141 ‘

The “admissible” solutions of this equation must, of
course, still satisfy the restrictions #2>1 and 62> ey;.
This version of the secular equation makes evident that
only one of the two square roots of either 0.2 or _% may
be an admissible surface-wave solution. Now, in the
interval 0 <o <gj, 0_2is a single valued continuous func-

TABLE I
c 4.2 v V2
- 3+ 1)z 2
e=0 0i2=(e N+t 2/(e— 12+ e 1 p2 _1__p
o2 — 4 p
2 e\/g 1
mz—p+1/1—- 1/ < ( P« 2 <1> 0_%=en = — >1 > — > —
PV eTT \e- 1 er 1t L VetV e~ 1) — pvele — D) T S
e—1) —ep+ 2/(e— P F
=1 — b gyt = (e—1) —epE2¢/(e— D2+ e 0 0
plo —4)
bi= = 4+ 4
- T L2vaGeFDpd T i
.t _r ,‘/ i( o )2 2 — (i2=0)
il S SN 25l Gy 0r=1 5%
I o* . . 1 1/1 1 P ot
= e — — = f_ %= — — _— —_— — —_
o 2+4/1+4 Bi=0t= o 521 w . 142
P 4/ (e—l—l p\? 1 1/1 1(5—1)2
= — — 1 o 0.2=02%2=— — — - <
e 7T T * 2 : Ta\cri) S0
__€¢=2>p 1/ e )2 2 — (_d_ z_)
a=-royp T 1+4<e—1 b= 0 (g0=0 ¢
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tion of ¢. Therefore, if 6., one of the square roots of 0_2,
is a proper solution of (13) in one part of this interval
but not in another part, the change must occur either
where §_2=1 (at point C) or where 6_?=e (at point
B). In the interval o3 <o <as, 0,2 s also a single-valued
continuous function of o and, moreover, is always
greater than both 1 and ev; in this interval. Therefore,
if one of the square roots of 8,2 provides a proper sur-
face-wave solution at any point of the segment DE, it
must provide a proper solution at all points of this seg-
ment. Finally, we observe that if 6(c) represents a
proper surface-wave solution in some continuous in-
terval in ¢ then either #>1 or §< —1 throughout this
interval. With these observations, the significance of the
successive steps in the analysis outlined in the next
paragraph should be evident.

The first step in the analysis is to consider the be-
havior of (13) in the limit as 6,2 ». If »;, and v, are
eliminated from (13) by substituting their known
values at a3, given in Table I, it becomes evident that,
for ,2— w0, ,— — « is a proper surface-wave solution
near point E (4.e., as 0—0; from above). It then follows
that 8, < —1 must be a proper surface-wave solution
throughout the segment DE. An independent verifica-
tion of this conclusion may be obtained by demonstrat-
ing that, in the neighborhood of point D, points on DE
are proper solutions with #; < —1, whereas points on
CD are not proper solutions. This implies that surface-
wave solutions do not exist on the segment CD. The
next step in the analysis is to show that 8_{(o3)>11is a
proper surface-wave solution if and only if (e-+1)p>4.
Since 0,203 according as (e+1)p24, this verifies the
conclusion that points on CD do not represent proper
solutions. In addition, it shows that points on BC, with
6_>1, do represent admissible surface-wave mode solu-
tions. Point B is defined by the requirement that
6_2(c1) = er1(01). This requirement is satisfled with 1> 0
for all p less than some upper bound. For sufficiently
large ¢, in particular, for the range of € values character-
istic of most ferrites, the upper bound is given by
ps=0.6. Thus, the final step in the analysis is to show
that 6_2(0) does not provide a proper surface-wave solu-
tion when p is sufficiently small. From this we conclude
that, when o1 >0, points on A B do not represent proper
surface-wave mode solutions.

The conclusions we have drawn from the analysis
described above are summarized in Fig. 6(a) where we
indicate the behavior of the surface-wave mode propa-
gation constants as a function of o, 4.e., as a function of
the dc magnetic field at a fixed frequency. To obtain
analogous results applicable when the dc magnetic field
is fixed and the frequency is varied, we introduce the

variables

@ p An M,
) m=14+—=1-+
'YH() g HQ

1
Q=—= 21 (14
a
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Fig. 6—Surface wave propagation constants. (a) p=constant, w
=constant, o~FH, (b) Ho=constant, m=1--p/o=constant,
Q=1/c~vo.

where m is independent of frequency and, for fixed H,,
Q is directly proportional to the frequency. Expressions
for »1,2 as functions of Q and m instead of p and ¢ are
readily obtained and the entire analysis may be re-
peated. Most of the required information can be ob-
tained by direct substitution into the result of the ear-
lier analysis and a reinterpretation of these results for m
fixed and @ as the variable. The results of this new
analysis are shown in Fig. 6(b). The surface-wave cutoff
points €545 are defined there in terms of m and e. For
e>1 and m>1, all these cutoff points are finite and
non-zero. The two frequency ranges in which surface
waves are permitted will overlap, <.e., 3>, when
(e—1)m> (e+3). In the earlier analysis, the low-field
cutofl point o1 was obtained from the solution of a
quartic equation. The expression for oy given in Table I
is an approximate solution of this quartic valid subject
to the assumptions indicated in Table I in connection
with the expression for ¢1. In the present analysis, it is
possible to obtain an exact expression for & since the
quartic equation for ¢ transforms to a quadratic equa-
tion in @2 The solution of this biquadratic which cor-
responds to the requirement 0_2=ey; is

_at vl — 4(e — 1)(em — ym?
B 2e—1)

0

“where

a= 3¢ — Dm>— 2¢+ I)m + e (15)

For all ¢>1, Q2 is finite so that this high-frequency cut-
off point always occurs. This is consistent with the re-
sults of our earlier analysis since, for any ferrite, p ap-
proaches zero as w goes to infinity.

Fig. 7 shows computed curves of 8 as a function of ¢
for values of p and e chosen to cover the range of values
characteristic of most ferrites at X band.” Note that an

18 S, Sensiper, “Resonance loss properties of ferrites in the 9-kmc
region,” Proc, IRE, vol. 44, pp. 1323~1342; October, 1956.
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Fig.. 7—Propagation constants for surface waves at a ferrite-air
interface (for fixed frequency).
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expanded scale has been employed for 8> 1. The curves
in Fig. 7 make it evident that, for fixed p and o, [0[ in-
creases with increasing € and that, for € and ¢ fixed, | 6]
decreases with increasing p. The only positive directed
(0>1) surface wave which exhibits a low-field cutoff
point is that for p=0.4. This is consistent with the re-
quirement indicated earlier that p be less than approxi-
mately 0.6 for this cutoff point to make its appearance.

To conclude this section, we note that we have shown
that two oppositely directed TE, surface-wave modes
are guided along a plane interface separating a dissipa-
tionless anisotropic (transversely magnetized) ferrite
from free space. The two surface waves exist in different
finite ranges of the parameter values. These two ranges
never coincide and may or may not overlap. In contrast
to the behavior of more familiar surface-wave phenom-
ena, the surface waves here under consideration always
exhibit both high- and low-frequency cutoff points (for
fixed dc magnetic field). In addition, at a fixed fre-
quency, each of the two surface waves cuts off for suf-
ficiently high dc magnetic field and may or may not
(depending on the parameter values) also cut off for
sufficiently low dc magnetic field. The propagation con-
stant of one of the two surface waves becomes infinite
at the low-field (high-frequency) cutoff point. The be-
havior of this infinite propagation constant, when the
guiding surface is located in different environments,
will be the major subject of discussion in the next section.

SURFACE WAVES ON FERRITE SLABS

In this section we will be concerned with the TE,,
surface waves guided along finite thickness ferrite slabs
located as indicated in Fig. 8. The secular equations de-
termining the surface-wave propagation constants are
again obtained via the transverse resonance procedure
described above. For this purpose we employ, in addi-
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Fig. 8—Ferrite loaded parallel plate waveguides. (a) Ferrite slab in
free space. (b) Ferrite slab near a short circuit. (c) Ferrite slab
at a short circuit. (d) Ferrite filled semi-infinite waveguide.

tion to the admittances defined in (7) and (8), the im-
pedance transfer formulas given by Morgenthaler® for
TE,o modes in ferrite media. We will be interested pri-
marily in the surface-wave solutions with large 6. With
this in mind we let

9% =10  gun = Qn. (16)

From (1) and (10) it follows that the wave numbers 0,
Qa, and @, are related through

02 =14 Q.2 = e + Ol an

Thus, for finite »;, 02— 0 implies Q,2— » and Q,2— «.
For each of the structures in Tig. 8(a), (b), (c) the
empty region extends to infinity. We must therefore
require that Q,>0.

Before writing down the secular equation for the fer-
rite slab in {ree space [see Fig. 8(a) ], it is instructive to
predict some of the features of this equation. Suppose
we choose to write the transverse resonance equation
in terms of the admittances at wx,, the midpoint of
the slab. With this choice, the total admittance is

=5
given as the sum of the admittances ¥Y(xq; Hy) and

— —
Y(xo; Ho) = Y(x0; —Hy). Thus, while each of these ad-
mittances depends on the direction of H,, their sum is
independent of this direction. We therefore expect that
the secular equation will be an even function of »,2, Also,
since reversing the direction of H, is equivalent to a
180° rotation about the x axis, the secular equation
must contain only even powers of 8. These requirements
are evidently satisfied by the secular equation
2 2
20:0m coth k30, + 9’”7 _Z o

41 71 vo?

Qa® + (18)

For a sufficiently thick slab, z.e., for 260, sufficiently
large, the two interfaces should behave independently.

That this is the case is verified by noting that in the
thick slab limit (18) becomes

18 F. R. Morgenthaler, “Transverse impedance transformation for
ferromagnetic media,” Proc. IRE, vol. 45, p. 1407; October, 1957.
The time dependence assumed in this reference is exp (jwf) not, as in
this paper, exp (—iwt). Note that the term following the plus sign in
the numerator of the right hand side of (4) of this reference has been
omitted. The omitted term is simply the quantity j.
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(Qa+%+ 6><Qa+&*i> —0. (19

141 o] 4]

This equation shows clearly that each interface of a
thick slab supports a pair of surface waves whose propa-
gation constants are either those in Fig. 6 (for the inter-
face at x=18) or the negatives of those in Fig. 6. With
certain minor modifications,® this conclusion is valid
for any slab thickness throughout most of the range in
which the surface waves propagate. The conclusions
noted above are summarized in the sketches in Fig. 9.
Note that the curves labeled RH in Fig. 9 are practi-
cally identical with those in Fig. 6(a) except in the imme-
diate vicinity of os. Note also that the low-field cutoff
point (o1") indicated in Fig. 9 is not simply related to the
corresponding point (oy) in Fig. 6(a).

The behavior of the infinite propagation constants
will play a significant role in the discussions which fol-
low. For this reason, it is pertinent to establish that, for
any slab thickness, 8 approaching both + « are proper
solutions of (18) for o—03 from above. We recall that »
is finite in the neighborhood of o3 and therefore §2—
implies 02~ Q2= Q.>—>«. Thus, for 0 approaching
either + =, (18) may be approximated by

" i 1
COtthlG] = ——2—<1 +V—1;";2—2> = h(s) (20)

where, since Q, must be positive, we have replaced
Q. by | 8| and, since Q. coth Qx>0 for 0,20, we have
replaced this term by | 8] coth &5 6] . Therefore, §— =
are both allowed solutions when %{¢)—1 from above or,
as is evident from Fig. 10(a), as 0—0; from above.

In turning now to the analysis of the structure in Fig.
8(b) we are, in effect, asking the following question.
What is the effect on the surface waves guided along a
ferrite slab of locating one side of the slab near a short
circuit? So long as we are interested only in the region in
which |6] is very large, the answer must be that the
short circuit will have very little effect since the surface
waves are very tightly bound to the two interfaces. In
particular, we certainly expect that for any d#%0 the
surface-wave propagation constants must still approach
both + » as ¢—0; from above. To verify that this is
indeed the case, we employ the transverse resonance
procedure described earlier to obtain

0.2 coth kdQ, + (1 4 coth kdQ,) QeCn coth £30m
V1
0 2 9%
+ (- cothdea)g——l-Q— ——=0 (21
Vs 7, ol

as the secular equation for the waveguide shown in
Fig. 8(b). It is immediately evident that as Qu—>  with
d#0 this equation reduces to (18). This verifies the as-
sertion made above concerning the infinite solutions to
(21) in the neighborhood of gs. Suppose now that the
right hand interface of the structure in Fig. 8(b) is al-
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lowed to recede to infinity. The surface waves which the
resulting structure would support would be those of the
left-hand interface modified by the presence of the short
circuit. It is evident that in this case we would find, for
any d#0, that there still exists an infinite solution
(0—-+ « only) as 6—0; from above. On the other hand,
if we set d=0 and so obtain the structure in Fig. 8(d)
the surface waves must vanish completely since, as can
readily be shown,® this structure will not support a
surface wave. The discontinuous behavior noted here
implies that a similar discontinuous behavior will be
found in the comparison of the behavior of the surface
waves for the structures in Figs. 8(b) and 8(c}.

When the ferrite slab is against the short circuit
[see Fig. 8(c) ], the secular equation is obtained by set-
ting d=01in (21). This yields>?

17 R. L. Pease, “On the propagation of surface waves over an in-
finite grounded ferrite slab,” IRE TRANS. ON ANTENNAS AND P'ROPA-
GATION, vol. 6, pp. 13-21; January, 1958. Pease discusses the solu-
tions to this equation in the thin slab approximation.
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On 0
00 + <= coth kQm — — = O.

153 Ve

(22)

To investigate the infinite solutions of this equation,
we proceed as we did in connection with (20) and, for
]0] —3 o0, approximate this equation by

(0— + o).

coth k5] 6| = + = - n = fi(o) (23)
V2

The + sign which appears in this equation (associated
with 68— 1+ ) results from replacing 6 by + ] 0] accord-
ing as 820. It is evident from (23) that #— = o« are al-
lowed solutions of (22) only for fi(s)—1 from above.
Sketches of these two functions are shown in Fig, 10(b).
An examination of these sketches makes evident that
#— o will be a solution for ¢—wa; from above whereas
the solution §— — « occurs, as before, for o—0o; from
above.

We have now arrived at the major result of this sec-
tion. We saw earlier that when the ferrite slab was ar-
bitrarily close to but not at the short circuit, 4.e., in the
limit as d—0, there were two infinite solutions allowed,
both occurring for ¢—e; from above. These two infinite
solutions are shown in Fig. 11(a). On the other hand,
when the ferrite slab is at the short circuit, 4.e., at the
limit d=0, there are still two infinite solutions, but the
§— -+ o solution is suddenly found at ¢—¢2 from above
instead of ¢—03 from above. The two infinite solutions
in this case are shown in Fig. 11(b). The discontinuous
behavior of the #— - « solution is evident from a com-
parison of Fig. 11(a) and (b). This discontinuous be-
havior will play a significant role in the discussions
which follow.

Tue TE,; PROPAGATING MODES OF THE SLAB
1.0ADED RECTANGULAR WAVEGUIDE

The secular equation determining the propagation
constants of the TE,, modes of the waveguide in Fig.
1 i1

™ 0
9a cot K(1 — A)gs + I cot KAgn — — =10

V1 Va

(24)

where the dimensionless parameters K and A are de-
fined as
K=ka=21r-;—; ~—  (0LAZ1). (25
For the propagating modes, 8 is real while g,,» may be
either real or imaginary. Since the secular equation is an
even function of both ¢, and ¢, we may, without loss of
generality, prescribe that these be positive when they
are real and that Im ¢,, ¢»>0 when they are imaginary.
Very little has been published concerning the com-
plete set of propagating mode solutions of (24). Some
data has been given fora few special choices of the param-
eter values.? In addition, for thin slabs, perturbation
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Fig. 11—Infinite propagation constants for surface waves on a
ferrite slab near a short circuit. (a) d—0. (b) d=0.

formulas are available®™:® in which the solutions to (24)
are obtained as first-order perturbations about the prop-
agation constants of the empty waveguide.

The analysis which follows is confined to the behavior
of the propagation constants at a fixed frequency as a
function of the dc magnetic field and the normalized
slab thickness. It is convenient to assume that this fixed
frequency is such that # <K <2w, ¢.e., such that the
empty waveguide propagates only the TE;q mode. It
will become evident as we proceed that this does not
seriously restrict the generality of the conclusions we
will draw.

Since the secular equation (24) is transcendental, we
cannot obtain its solutions in closed form. The results
presented below were obtained by a combination of
analytical and graphical investigations, the details of
which are given elsewhere.” In the following, the dis-
cussion will be primarily descriptive rather than de-
ductive.

The propagating TE,s modes of the waveguide in
Fig. 1 are of two kinds, a “surface-wave mode” bound to
the interface at x=0 and the “ordinary waveguide
modes.” The latter are the modes whose properties can
be understood (except for the effect of the ferrite aniso-
tropy) by assigning to the ferrite slab an equivalent di-
electric constant of er1. We expect that, except for A—1,
the characteristics of the surface-wave mode will be
very similar to those described earlier for the waveguide
in Fig. 8(c). It is therefore not surprising that, by follow-
ing the procedure employed in connection with (23), we
again find that for 62> ey; (so that ¢, and ¢, are both
imaginary for %— ) there are precisely two infinite 0
solutions and that these occur as follows: (a) -~ © as
o—as from above; (b) #— — «© as o—a; from above.

To justify the statement that e plays the role of an
effective dielectric constant in determining the proper-
ties of the ordinary waveguide modes, we point out,
first, that the relationship between 6% and ¢,? involves
only er;. Further, we note that the modal propagation

. ¥ B. Lax, K. J. Button, and L. M, Roth, “Ferrite phase shifters
in rectangular waveguide,” J. Appl. Phys., vol. 25, pp. 1413-1421;
November, 1954,
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constants for the completely filled ferrite loaded wave-
guide (i.e., for A=1) are given by

nar\ 2
0=i1/ev1-—<—> n=123---. (26
K

Finally, we note that the only place in which v, has ap-
peared so far is in the linear term in § in the secular
equation (24). In the isotropic limit, 7.e., for vo— =, this
secular equation reduces to one which is very similar to
the one which would apply for a dielectric slab with di-
electric constant en. Now, for 7 <K <27, the empty
waveguide (A=0) propagates only a single pair of
modes (two TE;, modes, one in each direction along z).
It is evident from (26) that the number of pairs of
modes propagated by the completely filled waveguide
depends on ev1. For »; <0, no modes may propagate, and
therefore increasing the slab thickness will tend to cut
off the modes which propagate at A==0. This will also be
true for 1 >0, but e <(w/K)*% On the other hand, for
ey positive and large, the completely filled waveguide
will propagate many pairs of modes and therefore in-
creasing the slab thickness should have the tendency to
increase the number of propagating modes. We recall
that », approaches infinity in the neighborhood of ¢s.
From the remarks above, we conclude that, except for
the surface-wave mode, the slab loaded waveguide
must become completely cut off as vy;—— w0, i.e., as
o—05 from below. On the other hand, we expect to find
a large number of propagating modes for »1— 4 =, 7.e.,
as 0—05 from above.

It was noted earlier that, subject to the restriction
62> ey1, there are precisely two infinite 6 solutions to
(24). The indicated restriction need not apply when
vi—>—+ o, Suppose then we assume that »; and 6% are
both large, but such that es;—6*>0. In this case, for
A#0and A1, we may approximate (24) by

1 1 R
(1 J?;)]el + — /e, — 8% cot KA v/en; — 62 =0
Vs 148

@2 0). 27

This equation is satisfied by many (large) values of 6,
both positive and negative. The solutions are located
approximately at the poles of the cotangent function.
Finally, in the limit as w»—, 82—, subject to
er1—02>0, we find an infinity of positive and negative
infinite solutions for #. These solutions represent surface
waves which are bound to the ferrite-air interface on the
air side only. The existence of such surface waves was
ignored in the discussions above since these were con-
cerned with surface waves which could exist on a single
isolated interface. Since we have now determined the
admitted infinite 8 solutions for both 82> ey; and 62 <ey,

19 P S, Epstein, “Theory of wave propagation in a gyromagnetic
medium,” Rew. Mod. Phys., vol. 28, pp. 3-17; January, 1956,
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(with A=0 and A=1), these must constitute the com-
plete set of infinite solutions.

The restrictions A0 and A1, noted in the preced-
ing paragraph, do not represent a meaningless quibble.
To see why this is so we note that the surface-wave
modes cannot exist for either A=0 or A=1, How does
the surface wave mode disappear as A—0 and A—1?
One way in which this can be accomplished is to have
the surface-wave mode disappear via 82— «, To investi-
gate this possibility, we note that when |§]—» and
A—0 (the product A| 8| remaining finite and nonzero)
the secular equation (24) may be approximated by

coth KA[ 0] = + = — v = fule) (62 0). (28)
Similarly, when [0]—» and A—1 (the product
[1 ~A]]0! remaining finite and non-zero), the secular
equation (24) may be approximated by
coth K(1 — A) ! 0[ =+ -1—- - i— =g,(s) (820).

Vo Vi

(29)

We therefore conclude that, for A—Q, infinite solutions
for 6 exist only when f.(¢) > 1 while, for A—1, such solu-
tions are admitted only when g.(o) > 1. Examination of
Figs. 10(b) and 12 makes evident that the infinite solu-
tions under consideration can occur only as follows:

range of o g < ¢ < oy g < o < oy
for A —0 f— + §— + (30)
fora—1 #—> — no infinities,

The next step in the analysis is concerned with the
determination of the conditions for cutoff. For 6=0,
the secular equation {24) becomes

\/€V1 J—
cot K(1 — A) + ——cot KA Ve = 0.

"

(31)

The values of v required for cutoff are readily deter-
mined at those values of A for which cot K(1—4) is
either zero or infinite as follows:

for A =1— mn/K,

n? (K —2
-
€ mw

forA=1— (2m+ 1)x/2K,

2 1) /K 2 1\2
Vl:SﬁL(m__mi“) and »,— — @, (32)
4e T 2

In each case, m=0, 1, 2, - - -+ up to the largest integer
for which A>20 and »=0, 1, 2, - - -. Fig. 13 shows
sketches of the values of vy at cutoff as a function of A
for K=1.527 and ¢=10.2° Points which were actually

20 The value chosen for X is appropriate for, RG 52/U rectangular
waveguide (inner dimensions 0.4 inch X0.9 inch) at 10 kmc.
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Fig. 13—, at cutoff (9=0) as a function of slab thickness

(K = 1.527, ¢ = 10).

computed are indicated by the small circles. The curves
are numbered according to the order of the modes of the
completely filled waveguide starting with #=1 for the
first mode which cuts off at a positive (non-zero) value
of »1. The additional =0 (or »; =0) solution at A=1 is
identified as being associated with the surface-wave
mode. Points on the curves labeled =2, 3, 4 which lie
in the shaded band are of no significance since values of
1 in the interval 1 —p <y; <1 do not occur. The bottom
of this band (»1=1-—p) corresponds to ¢=0, the top
(r1=1) to o0— . Since the cutoff characteristics depend
on y; only, a scale of numerical values for ¢ need not be
given unless we choose to specify p. Therefore, in Fig.
13 we content ourselves with merely indicating the di-
rections in which ¢ increases from zero to o5 and de-
creases from infinity to os.

There is a strong temptation to interpret the curves

January

in Fig. 4 as follows. The mode corresponding to any one
curve is either propagating or cut off according to
whether the point representing the values of »; and A
lies “above” or “below” the curve.?! While this inter-
pretation does provide a rough idea of the conditions
required for a particular mode to propagate, it is not
strictly valid. The interpretation would be completely
valid if the 6 vs ¢ characteristics for fixed A (or, equiva-
lently, the 8 vs A characteristics for fixed o) were sym-
metrical about the #=0 axis and were such that the
poles of the derivative of 8 with respect to ¢ always coin-
cided with #=0. The need for these reservations be-
comes apparent from an examination of the results indi-
cated in, e.g., Fig. 17. Also, we remark that the curves
in Fig. 13 give no indication of the erratic behavior of
the solutions to (31) in the limit as A-—>0. Therefore,
they should not be used as a basis for a discussion of the
cutoff characteristics in the immediate vicinity of A=0,

The segment of the #=1 curve shown with an ex-
panded »; scale at the top of Fig. 13 reveals that A(»)
for cutoff is multivalued for small positive ev;. Presum-
ably, this may also be the case for other values of # in
the range of sufficiently small er;. The significance of this
multivalued character becomes evident from a study of
Figs. 14 and 15.22 The curves in Fig. 14 are for »; <0 so
that the only propagating modes are the surface wave
mode (#=0) and the perturbed empty waveguide mode
(n=1). The curves for both modes exhibit only the sin-
gle cutoff predicted in Fig. 13. The manner in which the
surface-wave mode disappears for A—0 and A—1 is con-
sistent with the information given in (30). When »
takes on small positive values corresponding to values of
¢ in the interval 0 <o <1-—p the surface wave mode is
still admitted for A0, 1. The empty waveguide still
propagates only the TE;, mode and, for sufficiently
small »1, the completely filled waveguide does not sup-
port any propagating modes. Now, it is evident from
(30) that infinite solutions for ¢ aré no longer admitted
with either A—0 or A—1. Therefore, the only way in
which the surface-wave mode can disappear at A=0and
A=11is to have the 6 vs A curve for this mode close on
itself. This is precisely what happens in the curves
labeled ¢ and & in Fig. 15. In closing on itself, the 8 vs
A curve passes through 0=0 twice. Thus, the three
values of A at which Fig, 13 predicts that 8 will equal
zero are all accounted for. As »; is increased, the two
separate @ vs A curves join to form a single continuous
curve. This situation is illustrated by curve ¢ of Fig. 15.
When »; is increased further to a value such that the
completely filled waveguide will support one pair of
propagating modes, the single curve ¢ splits at A=1 to
become the two continuous curves labeled d.

% In this connection, the adjective “above” is to be interpreted
as implying “above and/or to the left of” for curves which vanish
via »;—— w and “above and/or to the right of” for the curves on
which », tends to - .

2 Data for these curves was obtained by a graphical procedure
described by Bresler (ref. 7).
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Fig. 15—Propagation constants as functions of the slab thickness
(K = 1.527, ¢ = 10, p = 0.8).

(a) o =0.190, = 00245, e = 0.0249.
(b) o = 01877, » =0.0300, v = 0.0305.
() o=01822, » =0.0433, = 0.0444,
@) o =0.1567, » = 0.100, vs = 0.106.

When »; is increased still further beyvond the values
employed in Fig. 15, additional propagating modes ap-
pear at A=1 and will propagate for all values of A down
to approximately the cutoff value given in Fig. 13. As
soon as »; becomes reasonably large, the surface wave
mode is no longer propagated by the ferrite-air inter-
face, and therefore we are no longer required to account
for either its presence or the manner of its disappear-
ance at A=0, 1. Sketches of a typical set of 8 vs A curves
{or a reasonably large value of ey, are shown in Fig. 16.

The sketches shown in Fig, 17 illustrate the behavior
of 8 as a function of ¢ for fixed A. Certain essential
features of these sketches (data concerning the surface-
wave mode, the behavior at cutoff and the infinities in
8 follow directly from the results given above. Two
other essential features (the slopes of the curves at
§ =0 and the absence of maximum and minimum points)
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will be justified by the analysis presented in the next
section.

The sketches in Fig. 17 are proportioned to corre-
spond roughly to K=1.527, e=10 and p=0.8. In Fig.
17(a), the region between the o5 ordinate and the n=35
curve is shaded to indicate that this region contains an
infinity of propagating modes for each of which 0— + o
as o—0y from above. The region corresponding to
¢ > 03 is not reproduced in Fig. 17(b), (c), (d) since the
basic characteristics of the 6 vs ¢ curves in this interval
do not change with A. In the interval 0<l¢ <5 the
n=0and #=1 curves are shown for four different values
of A. The remainder of this paragraph is devoted to a
simplified explanation for the behavior exhibited by
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these sketches. For the values of p and € involved, an
isolated ferrite-air interface would support a surface
wave with 6> 1 throughout the interval 0 <o <o where
04> g3 With the finite thickness slab, the effect of plac-
ing the slab against a short circuiting wall is to convert
the o3 ordinate into a barrier which the 6 vs ¢ curve for
the surface wave may not cross and at which §—-
as o—w0y from above. However, a study of Fig. 17 re-
veals that even with the smallest value of A employed
(i.e., when the effect of the short circuit should be most
pronounced) the surface wave reasserts itself as ¢ ap-
proaches zero and distorts the #n=1 curve so that part
of this curve constitutes a continuation of the gently
sloping portion of the =0 curve. As A is increased so
that the effect of the short circuit is diminished, the gap
in the surface-wave characteristic between the #=0 and
n=1 curves is likewise diminished. The gap does not dis-
appear completely because the infinity at o3 is required
for any finite slab thickness.

THE POWER FLOW ASSOCIATED WITH THE
PROPAGATING MODES

In an earlier paper® the author employed a matrix
formulation for the Maxwell equations to deduce a re-
lationship between the power flow associated with a
propagating mode in an arbitrary dissipationless uni-
form waveguide and the frequency derivative of the
propagation constant of this mode. For our purposes
here, we require an analogous relationship involving
the derivative of 8 with respect to ¢ when p and w (or
k) are held constant. By a procedure which parallels
that employed in connection with (18) through (24)
of the paper just cited,® it can be shown that the required
relationship is

2P0, = f f H,*-y'-H.dS (33)
8

where 0, is the (normalized) propagation constant of a
particular propagating mode, P, is the (real) power
flow associated with this mode, H, is the total magnetic
field of this mode, u is the tensor permeability of the fer-
rite slab, the prime superscript indicates the derivative
with respect to ¢ and the required integration is to be
carried out over the cross section, .S, of the waveguide.
P, is defined so that it is positive for power flow along
—+2z. The result in (33) is obtained when the modes are
normalized in the manner indicated in the reference
cited earlier.® Also, to obtain (33), we must exploit the
fact that the boundary conditions at the waveguide
walls, the (scalar) permittivity of the ferrite and both
the (scalar) permeability and permittivity associated
with the empty waveguide regions are all independent
of a.

For the TE., modes, H, has nonzero components
only in the plane transverse to v (i.e., to Hy). Therefore,
for these modes, we introduce the subscript T" to dis-

Janvary

tinguish quantities confined to this transverse plane
and rewrite (33) as

2P0, = f f Hro*-wr' - HradS. (34)
8

For a dissipationless ferrite, yr is a hermitian matrix,
and therefore its derivative with respect to ¢ is also
hermitian. Moreover, it is readily verified that (for
fixed p and k) this derivative is negative definite when p
is positive. It then follows from (34) that for the TE,,
modes here under consideration

Pb, <0 for p>0 (35)

so that, for positive p, Po20 according as .’ S0. Fur-
thermore, we see that P, may equal zero only at the
poles of 6,’. This means that the power flow associated
with a propagating mode can change direction only
where 6.’ is infinite. A further important interpretation
of (35) is the recognition that 6, can not equal zero un-
less P, becomes infinite. There is no difficulty in exclud-
ing the latter possibility in the case of closed wave-
guides, and we therefore conclude that 6,’=0 cannot
occur; t.e., that the 8 vs o curves cannot exhibit maxi-
mum or minimum points.

In the sketches in Fig. 17 we have indicated that the
poles of 8," do not ordinarily occur where 8,=0. This
statement is verified by noting that P, is zero only at
the poles of 8, whereas it can be shown that” at 8,=0

n? <sin KA \/31>2 ,
Ky, Ven ’

Thus, for 6,=0, we find that P,20 according as »2$ 0.
It then follows from (35) that, at 8,=0, 8,/ 20 according
as p3 2 0. The availability of this last result eliminated a
good deal of the guesswork which would otherwise have
been involved in connection with the sketches in Fig. 17.

Poz = (36)

CoNCLUSION—RESOLUTION OF THE
THERMODYNAMIC PARADOX

It is evident from Fig. 17 that the possibility of the
existence of only a single TE,, propagating mode for
the waveguide in Fig. 1 arises only from the fact that
there is a nonvanishing interval between the wvalues
of o at which #—- « and §— — « for the surface-wave
mode. It is further evident that if this interval did not
exist there would always be an even number of propa-
gating modes. The results obtained in the preceding
section, in particular, that in (35), make evident that
this even number of propagating modes would always
divide so that half transported energy in one direction
along 2, half in the other. This observation clears the
way for the resolution of the thermodynamic paradox.
It is reasonable to expect that the discontinuous be-
havior illustrated in Fig. 11 will also be evident for the
surface-wave modes of the waveguides in Figs. 1 and 18.
To verify this conjecture we note that the secular equa-
tion for the TE,; modes of the latter waveguide is!8
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where D=d/a. The reader may verify that for any d#0,
however small, this equation admits both 8—% « as
solutions for o—e3 from above, and does not admit
f— -+ » as a solution in the neighborhood of o;. He may
then further verify that, except for the discontinuity
already referred to, all other solutions of (37) pass con-
tinuously into solutions of (24) in the limit as d—0. It
will then be evident that in the limit as d—0, the
sketches in Fig. 17 serve to describe all the modes of the
waveguide in Fig. 18 except the #=0 mode. A study of
Fig. 11 makes evident that the 0 vs o curve for the n=0
mode of the waveguide in Fig. 18 will be that illustrated
in Fig. 19. Finally, when we combine the results given
in Figs. 17 and 19, we see that for any d5£0 and, in par-
ticular, in the limit as d—0, the waveguide in Fig. 18
will always support an even number of propagating
TE.o modes. To establish that this conclusion is valid
for values of K outside the range 7 <K < 2w, we need
only recall that the locations of the infinities in 8 are
independent of K,

The conclusion to which we are led is now evident.
We have seen that if we accept the solutions of the
secular equation (24) as constituting the correct de-
scription of the propagating TE,, modes of the wave-
guide in Fig. 1, then we are led inescapably to a thermo-
dynamic paradox. On the other hand, for any d#0 and,
in particular, in the limit as d—0, the solutions of the
secular equation (37) do not, a prieri, give rise to any
thermodynamic difficulties associated with the TEao
spectrum of the waveguide in Fig. 18. These considera-
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Fig. 18—Ferrite slab loaded rectangular waveguide
(slab away from waveguide wall).
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Fig. 19—0 vs ¢ for the surface wave mode of the
waveguide in Fig. 18.
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tions lead us to assert that the TE,, mode propagation
constants for the waveguide in Fig. 1 must be obtained
from the solutions of the secular equation (37) in the
limit d—0 and not from the secular equation (24), 1.e.,
not from the secular equation which obtains at the limit
d=0. We assert further that when this is done there
will. no longer exist any basis for construction of a ther-
modynamic paradox associated with the waveguide
in Fig. 1.

The conclusion just stated may be criticized on the
grounds that while it tells us how to avoid thermody-
namic difficulties, it does not tell us why such difficulties
are encountered. Anticipating such criticism, we offer
the following remarks in our defense. The problem we
have been considering is an idealization of a physical
reality. Let us recall some of the idealizations which
were implicit in our formulation of the problem. Thus,
we have been considering absolutely dissipationless
waveguides bounded by perfectly conducting walls and
loaded with uniformly magnetized homogeneous ferrite
slabs contained within sharply defined planar boundar-
ies. All these idealizations are widely employed in the
formulation of electromagnetic problems and we accept
them on the basis of the implicit assumption that the
solutions to these idealized problems represent the be-
havior of a physical system in an appropriate limiting
sense. To speak of the ferrite slab in Fig. 18 as being
against the waveguide wall is to describe a physical
situation for which we can not ordinarily distinguish
between the mathematical descriptions d=0 and the
limit as d—0. Given two different but equally accept-
able mathematical idealizations for a physical situation,
we are often called upon to distinguish between these
idealizations by the physical content of the solutions to
the problem which they yield. Thus, in our problem, we
find that the two idealizations d=0 and d--0 lead to
distinctly different solutions. Without asking why this
difference arises, we are justified in choosing between
them on the basis that the idealization which leads to a
thermodynamic paradox must be discarded.
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